This section (A) is called the Mathematical and Physical section. Mathematics and Physics have been long accustomed to coalesce, and hence this grouping. For while mathematics, as a product of the human mind, is self-sustaining and nobly self-rewarding,—while the pure mathematician may never trouble his mind with considerations regarding the phenomena of the material universe, still the form of reasoning which he employs, the power which the organization of that reasoning confers, the applicability of his abstract conceptions to actual phenomena, render his science one of the most potent instruments in the solution of natural problems. Indeed, without mathematics, expressed or implied, our knowledge of physical science would be friable in the extreme.
Side by side with the mathematical method, we have the method of experiment. Here, from a starting-point furnished by his own researches or those of others, the investigator proceeds by combining intuition and verification. He ponders the knowledge he possesses and tries to push it further, he guesses and checks his guess, he conjectures and confirms or explodes his conjecture. These guesses and conjectures are by no means leaps in the dark; for knowledge once gained casts a faint light beyond its own immediate boundaries. There is no discovery so limited as not to illuminate something beyond itself. The force of intellectual penetration into this penumbral region which surrounds actual knowledge is not dependent upon method, but is proportional to the genius of the investigator. There is, however, no genius so gifted as not to need control and verification. The profoundest minds know best that nature’s ways are not at all times their ways, and that the brightest flashes in the world of thought are incomplete until they have been proved to have their counterparts in the world of fact. The vocation of the true experimentalist is the incessant correction and realization of his insight; his experiments finally constituting a body, of which his purified intuitions are, as it were, the soul.
Partly through mathematical, and partly through experimental research, physical science has of late years assumed a momentous position in the world. Both in a material and in an intellectual point of view it has produced, and it is destined to produce, immense changes, vast social ameliorations, and vast alterations in the popular conception of the origin, rule, and governance of things. Miracles are wrought by science in the physical world, while philosophy is forsaking its ancient metaphysical channels, and pursuing those opened or indicated by scientific research. This must become more and more the case as philosophic writers become more deeply imbued with the methods of science, better acquainted with the facts which scientific men have won, and with the great theories which they have elaborated.
If you look at the face of a watch, you see the hour and minute-hands, and possibly also a second-hand, moving over the graduated dial. Why do these hands move, and why are their relative motions such as they are observed to be? These questions cannot be answered without opening the watch, mastering its various parts, and ascertaining their relationship to each other. When this is done, we find that the observed motion of the hands follows of necessity from the inner mechanism of the watch when acted upon by the force invested in the spring.
This motion of the hands may be called a phenomenon of art, but the case is similar with the phenomena of Nature. These also have their inner mechanism, and their store of force to set that mechanism going. The ultimate problem of physical science is to reveal this mechanism, to discern this store, and to show that from the combined action of both, the phenomena of which they constitute the basis must of necessity flow.
I thought that an attempt to give you even a brief and sketchy illustration of the manner in which scientific thinkers regard this problem would not be uninteresting to you on the present occasion; more especially as it will give me occasion to say a word or two on the tendencies and limits of modern science, to point out the region which men of science claim as their own, and where it is mere waste of time to oppose their advance, and also to define, if possible, the bourne between this and that other region to which the questionings and yearnings of the scientific intellect are directed in vain.
But here your tolerance will be needed. It was the American Emerson, I think, who said that it is hardly possible to state any truth strongly without apparent injury to some other truth. Under the circumstances, the proper course appears to be to state both truths strongly, and allow each its fair share, in the formation of the resultant conviction. For truth is often of a dual character, taking the form of a magnet with two poles; and many of the differences which agitate the thinking part of mankind are to be traced to the exclusiveness with which different parties affirm one half of the duality in forgetfulness of the other half. But this waiting for the statement of the two sides of a question implies patience. It implies a resolution to suppress indignation if the statement of the one half should clash with our convictions, and not to suffer ourselves to be unduly elated if the half-statement should chime in with our views. It implies a determination to wait calmly for the statement of the whole before we pronounce judgment either in the form of acquiescence or dissent.
This premised, let us enter upon our task. There have been writers who affirmed that the pyramids of Egypt were the productions of nature; and in his early youth Alexander Von Humboldt wrote an essay with the express object of refuting this notion. We now regard the pyramids as the work of men’s hands, aided probably by machinery of which no record remains. We picture to ourselves the swarming workers toiling at those vast erections, lifting the inert stones, and, guided by the volition, the skill, and possibly at times by the whip of the architect, placing the stones in their proper positions. The blocks in this case were moved by a power external to themselves, and the final form of the pyramid expressed the thought of its human builder.
Let us pass from this illustration of building power to another of a different kind. When a solution of common salt is slowly evaporated, the water which holds the salt in solution disappears, but the salt itself remains behind. At a certain stage of concentration, the salt can no longer retain the liquid form; its particles, or molecules, as they are called, begin to deposit themselves as minute solids, so minute, indeed, as to defy all microscopic power. As evaporation continues solidification goes on, and we finally obtain, through the clustering together of innumerable molecules, a finite mass of salt of a definite form. What is this form? It sometimes seems a mimicry of the architecture of Egypt. We have little pyramids built by the salt, terrace above terrace from base to apex, forming thus a series of steps resembling those up which the Egyptian traveler is dragged by his guides. The human mind is as little disposed to look at these pyramidal salt-crystals without further question as to look at the pyramids of Egypt without inquiring whence they came. How, then, are those salt pyramids built up?
Guided by analogy, you may suppose that, swarming among the constituent molecules of the salt, there is an invisible population, guided and coerced by some invisible master, and placing the atomic blocks in their positions. This, however, is not the scientific idea, nor do I think your good sense will accept it as a likely one. The scientific idea is that the molecules act upon each other without the intervention of slave labor; that they attract each other and repel each other at certain definite points, and in certain definite directions; and that the pyramidal form is the result of this play of attraction and repulsion. While, then, the blocks of Egypt were laid down by a power external to themselves, these molecular blocks of salt are self-posited, being fixed in their places by the forces with which they act upon each other.