Agassiz's long and elaborate researches upon fossil fishes, published between 1833 and 1842, led him to suggest the existence of another kind of relation between ancient and modern forms of life. He observed that the oldest fishes present many characters which recall the embryonic conditions of existing fishes; and that, not only among fishes, but in several groups of the invertebrata which have a long palæontological history, the latest forms are more modified, more specialised, than the earlier. The fact that the dentition of the older tertiary ungulate and carnivorous mammals is always complete, noticed by Professor Owen, illustrated the same generalisation.

Another no less suggestive observation was made by Mr. Darwin, whose personal investigations during the voyage of the Beagle led him to remark upon the singular fact, that the fauna, which immediately precedes that at present existing in any geographical province of distribution, presents the same peculiarities as its successor. Thus, in South America and in Australia, the later tertiary or quaternary fossils show that the fauna which immediately preceded that of the present day was, in the one case, as much characterised by edentates and, in the other, by marsupials as it is now, although the species of the older are largely different from those of the newer fauna.

However clearly these indications might point in one direction, the question of the exact relation of the successive forms of animal and vegetable life could be satisfactorily settled only in one way; namely, by comparing, stage by stage, the series of

forms presented by one and the same type throughout a long space of time. Within the last few years this has been done fully in the case of the horse, less completely in the case of the other principal types of the ungulata and of the carnivora; and all these investigations tend to one general result, namely, that, in any given series, the successive members of that series present a gradually increasing specialisation of structure. That is to say, if any such mammal at present existing has specially modified and reduced limbs or dentition and complicated brain, its predecessors in time show less and less modification and reduction in limbs and teeth and a less highly developed brain. The labours of Gaudry, Marsh, and Cope furnish abundant illustrations of this law from the marvellous fossil wealth of Pikermi and the vast uninterrupted series of tertiary rocks in the territories of North America.

I will now sum up the results of this sketch of the rise and progress of palæontology. The whole fabric of palæontology is based upon two propositions: the first is, that fossils are the remains of animals and plants; and the second is, that the stratified rocks in which they are found are sedimentary deposits; and each of these propositions is founded upon the same axiom, that like effects imply like causes. If there is any cause competent to produce a fossil stem, or shell, or bone, except a living being, then palæontology has no foundation; if the stratification of the rocks is not the effect of such causes as at present produce

stratification, we have no means of judging of the duration of past time, or of the order in which the forms of life have succeeded one another. But if these two propositions are granted, there is no escape, as it appears to me, from three very important conclusions. The first is that living matter has existed upon the earth for a vast length of time, certainly for millions of years. The second is that, during this lapse of time, the forms of living matter have undergone repeated changes, the effect of which has been that the animal and vegetable population, at any period of the earth's history, contains some species which did not exist at some antecedent period, and others which ceased to exist at some subsequent period. The third is that, in the case of many groups of mammals and some of reptiles, in which one type can be followed through a considerable extent of geological time, the series of different forms by which the type is represented, at successive intervals of this time, is exactly such as it would be, if they had been produced by the gradual modification of the earliest forms of the series. These are facts of the history of the earth guaranteed by as good evidence as any facts in civil history.

Hitherto I have kept carefully clear of all the hypotheses to which men have at various times endeavoured to fit the facts of palæontology, or by which they have endeavoured to connect as many of these facts as they happened to be acquainted with. I do not think it would be a profitable employment of our time to discuss conceptions which doubtless have had their justification and even their use, but which

are now obviously incompatible with the well-ascertained truths of palæontology. At present these truths leave room for only two hypotheses. The first is that, in the course of the history of the earth, innumerable species of animals and plants have come into existence, independently of one another, innumerable times. This, of course, implies either that spontaneous generation on the most astounding scale, and of animals such as horses and elephants, has been going on, as a natural process, through all the time recorded by the fossiliferous rocks; or it necessitates the belief in innumerable acts of creation repeated innumerable times. The other hypothesis is, that the successive species of animals and plants have arisen, the later by the gradual modification of the earlier. This is the hypothesis of evolution; and the palæontological discoveries of the last decade are so completely in accordance with the requirements of this hypothesis that, if it had not existed, the palæontologist would have had to invent it.

I have always had a certain horror of presuming to set a limit upon the possibilities of things. Therefore I will not venture to say that it is impossible that the multitudinous species of animals and plants may have been produced, one separately from the other, by spontaneous generation; nor that it is impossible that they should have been independently originated by an endless succession of miraculous creative acts. But I must confess that both these hypotheses strike me as so astoundingly improbable, so devoid of a shred of either scientific or traditional support, that even if

there were no other evidence than that of palæontology in its favour, I should feel compelled to adopt the hypothesis of evolution. Happily, the future of palæontology is independent of all hypothetical considerations. Fifty years hence, whoever undertakes to record the progress of palæontology will note the present time as the epoch in which the law of succession of the forms of the higher animals was determined by the observation of palæontological facts. He will point out that, just as Steno and as Cuvier were enabled from their knowledge of the empirical laws of coexistence of the parts of animals to conclude from a part to the whole, so the knowledge of the law of succession of forms empowered their successors to conclude, from one or two terms of such a succession, to the whole series; and thus to divine the existence of forms of life, of which, perhaps, no trace remains, at epochs of inconceivable remoteness in the past.