Turning to the Vertebrata, the only Paleozoic Elasmobranch Fish of which we have any complete knowledge is the Devonian and Carboniferous 'Pleuracanthus', which differs no more from existing Sharks than these do from one another.

Again, vast as is the number of undoubtedly Ganoid fossil Fishes, and great as is their range in time, a large mass of evidence has recently been adduced to show that almost all those respecting which we possess sufficient information, are referable to the same sub-ordinal groups as the existing 'Lepidosteus', 'Polypterus', and Sturgeon; and that a singular relation obtains between the older and the younger Fishes; the former, the Devonian Ganoids, being almost all members of the same sub-order as 'Polypterus', while the Mesozoic Ganoids are almost all similarly allied to 'Lepidosteus'.* ([Footnote] *"Memoirs of the Geological Survey of the United Kingdom.—Decade x. Preliminary Essay upon the Systematic Arrangement of the Fishes of the Devonian Epoch.")

Again, what can be more remarkable than the singular constancy of structure preserved throughout a vast period of time by the family of the Pycnodonts and by that of the true Coelacanths; the former persisting, with but insignificant modifications, from the Carboniferous to the Tertiary rocks, inclusive; the latter existing, with still less change, from the Carboniferous rocks to the Chalk, inclusive?

Among Reptiles, the highest living group, that of the Crocodilia, is represented, at the early part of the Mesozoic epoch, by species identical in the essential characters of their organization with those now living, and differing from the latter only in such matters as the form of the articular facets of the vertebral centra, in the extent to which the nasal passages are separated from the cavity of the mouth by bone, and in the proportions of the limbs.

And even as regards the Mammalia, the scanty remains of Triassic and Oolitic species afford no foundation for the supposition that the organization of the oldest forms differed nearly so much from some of those which now live as these differ from one another.

It is needless to multiply these instances; enough has been said to justify the statement that, in view of the immense diversity of known animal and vegetable forms, and the enormous lapse of time indicated by the accumulation of fossiliferous strata, the only circumstance to be wondered at is, not that the changes of life, as exhibited by positive evidence, have been so great, but that they have been so small.

Be they great or small, however, it is desirable to attempt to estimate them. Let us, therefore, take each great division of the animal world in succession, and, whenever an order or a family can be shown to have had a prolonged existence, let us endeavour to ascertain how far the later members of the group differ from the earlier ones. If these later members, in all or in many cases, exhibit a certain amount of modification, the fact is, so far, evidence in favour of a general law of change; and, in a rough way, the rapidity of that change will be measured by the demonstrable amount of modification. On the other hand, it must be recollected that the absence of any modification, while it may leave the doctrine of the existence of a law of change without positive support, cannot possibly disprove all forms of that doctrine, though it may afford a sufficient refutation of any of them.

The PROTOZOA.—The Protozoa are represented throughout the whole range of geological series, from the Lower Silurian formation to the present day. The most ancient forms recently made known by Ehrenberg are exceedingly like those which now exist: no one has ever pretended that the difference between any ancient and any modern Foraminifera is of more than generic value, nor are the oldest Foraminifera either simpler, more embryonic, or less differentiated, than the existing forms.

The COELENTERATA.—The Tabulate Corals have existed from the Silurian epoch to the present day, but I am not aware that the ancient 'Heliolites' possesses a single mark of a more embryonic or less differentiated character, or less high organization, than the existing 'Heliopora'. As for the Aporose Corals, in what respect is the Silurian 'Paleocyclus' less highly organized or more embryonic than the modern 'Fungia', or the Liassic Aporosa than the existing members of the same families?

The 'Mollusca'.—In what sense is the living 'Waldheimia' less embryonic, or more specialized; than the paleozoic 'Spirifer'; or the existing 'Rhynchonellae', 'Craniae', 'Discinae', 'Lingulae', than the Silurian species of the same genera? In what sense can 'Loligo' or 'Spirula' be said to be more specialized, or less embryonic, than 'Belemnites'; or the modern species of Lamellibranch and Gasteropod genera, than the Silurian species of the same genera?