Thus, by the progress of knowledge, Cuvier’s fourth distinction between the animal and the plant has been as completely invalidated as the third and second; and even the first can be retained only in a modified form and subject to exceptions.
But has the advance of biology simply tended to break down old distinctions, without establishing new ones?
With a qualification, to be considered presently, the answer to this question is undoubtedly in the affirmative. The famous researches of Schwann and Schleiden in 1837 and the following years, founded the modern science of histology, or that branch of anatomy which deals with the ultimate visible structure of organisms, as revealed by the microscope; and, from that day to this, the rapid improvement of methods of investigation, and the energy of a host of accurate observers, have given greater and greater breadth and firmness to Schwann’s great generalisation, that a fundamental unity of structure obtains in animals and plants; and that, however diverse may be the fabrics, or tissues, of which their bodies are composed, all these varied structures result from the metamorphosis of morphological units (termed cells, in a more general sense than that in which the word “cells” was at first employed), which are not only similar in animals and in plants respectively, but present a close resemblance, when those of animals and those of plants are compared together.
The contractility which is the fundamental condition of locomotion, has not only been discovered to exist far more widely among plants than was formerly imagined; but, in plants, the act of contraction has been found to be accompanied, as Dr. Burdon Sanderson’s interesting investigations have shown, by a disturbance of the electrical state of the contractile substance, comparable to that which was found by Du Bois Reymond to be a concomitant of the activity of ordinary muscle in animals.
Again, I know of no test by which the reaction of the leaves of the Sundew and of other plants to stimuli, so fully and carefully studied by Mr. Darwin, can be distinguished from those acts of contraction following upon stimuli, which are called “reflex” in animals.
On each lobe of the bilobed leaf of Venus’s fly trap (Dionæa muscipula) are three delicate filaments which stand out at right angle from the surface of the leaf. Touch one of them with the end of a fine human hair and the lobes of the leaf instantly close together[31] in virtue of an act of contraction of part of their substance, just as the body of a snail contracts into its shell when one of its “horns” is irritated.
The reflex action of the snail is the result of the presence of a nervous system in the animal. A molecular change takes place in the nerve of the tentacle, is propagated to the muscles by which the body is retracted, and causing them to contract, the act of retraction is brought about. Of course the similarity of the acts does not necessarily involve the conclusion that the mechanism by which they are effected is the same; but it suggests a suspicion of their identity which needs careful testing.
The results of recent inquiries into the structure of the nervous system of animals converge towards the conclusion that the nerve fibres, which we have hitherto regarded as ultimate elements of nervous tissue, are not such, but are simply the visible aggregations of vastly more attenuated filaments, the diameter of which dwindles down to the limits of our present microscopic vision, greatly as these have been extended by modern improvements of the microscope; and that a nerve is, in its essence, nothing but a linear tract of specially modified protoplasm between two points of an organism—one of which is able to affect the other by means of the communication so established. Hence, it is conceivable that even the simplest living being may possess a nervous system. And the question whether plants are provided with a nervous system or not, thus acquires a new aspect, and presents the histologist and physiologist with a problem of extreme difficulty, which must be attacked from a new point of view and by the aid of methods which have yet to be invented.
Thus it must be admitted that plants may be contractile and locomotive; that, while locomotive, their movements may have as much appearance of spontaneity as those of the lowest animals; and that many exhibit actions, comparable to those which are brought about by the agency of a nervous system in animals. And it must be allowed to be possible that further research may reveal the existence of something comparable to a nervous system in plants. So that I know not where we can hope to find any absolute distinction between animals and plants, unless we return to their mode of nutrition, and inquire whether certain differences of a more occult character than those imagined to exist by Cuvier, and which certainly hold good for the vast majority of animals and plants, are of universal application.
A bean may be supplied with water in which salts of ammonia and certain other mineral salts are dissolved in due proportion; with atmospheric air containing its ordinary minute dose of carbonic acid; and with nothing else but sunlight and heat. Under these circumstances, unnatural as they are, with proper management, the bean will thrust forth its radicle and its plumule; the former will grow down into roots, the latter grow up into the stem and leaves of a vigorous bean plant; and this plant will, in due time, flower and produce its crop of beans, just as if it were grown in the garden or in the field.