19. The cause of Weight: Attraction: Force.

We know nothing whatever of the reason why bodies possess weight. Bodies do not fall on account of the law of gravitation (§ 9); nor does their gravity explain why they fall. Gravity, as we have seen, is only a name for weight, and the law of gravitation is only a statement of how bodies approach one another, not why they do so.

It is often said that gravitation is attraction, and that bodies fall to the earth because the earth attracts them. But the word “attract” simply means to “draw towards,” and “attraction” means nothing but “drawing towards;” and to say, when two bodies move towards one another, that they are “drawn towards” one another, is simply to describe the fact and makes us no whit wiser than we were before. On the contrary, unless we take great care, it may make us a little less wise. For the words “drawing towards” are so closely associated with ropes and hooks and the act of pulling, that we are easily led to fancy the existence of some analogous invisible machinery in the case of mutually attractive bodies.

Again, gravitation is spoken of as a force; and as the word force is in very common use, let us try to make out what we mean by it. A man is said to exert force when he pushes or pulls anything so as either to exert pressure upon it or to put it in motion. A wrestler’s force is proved by his hug; a bowler’s force is shown by the swiftness of motion of the ball.

Force, then, is the name which we give to that which causes or, in the case of pressure, tends to cause, motion. The force of gravity therefore means the cause of the pressure which we feel when bodies which possess gravity are supported by our bodies, and the cause of their movement towards the centre of the earth, when they are free to move. But it is exactly about the cause of these phenomena that we know nothing whatever.

A good deal of mischief is done by the inaccurate use of such words as attraction and force, as if they were the names of things having an existence apart from natural objects, and from the series of causes and effects which are open to our observation; while they are, in reality, merely the names of the unknown causes of certain phenomena. And it is worth while to take pains to get clear ideas on this head at the outset of the study of science.

Let us remember then that, so far as we know, it is a law of nature, that any two material bodies, if they are free to move, approach one another with gradually increasing swiftness; and that the space over which each travels before the two meet, is inversely proportional to the quantity of matter which it contains. Attraction of gravitation is a name for this general fact; weight is the name for the fact in the case of terrestrial bodies; force is a name which we give to the unknown cause of the fact. The fact is that which it is important to know. The names are of no great consequence so long as we recollect that they are merely names and not things.

20. The Weight of Water is Proportioned to its Bulk.

We must next consider, not weight in general, but the weight of water. We say that a tumbler full of water is heavier than an empty tumbler, because the full tumbler gives us a greater feeling of effort when we lift it than the empty tumbler does. The more water there is in the tumbler the greater is the effort. A pail full of water requires still more effort, though the empty pail feels quite light; and, when we come to deal with a large tub full of water, we may be unable to stir it, though the empty tub could be lifted with ease. Thus it seems that the greater the bulk of water the more it weighs, and the less the bulk the less it weighs. But then a single drop of water in the palm of the hand seems to weigh nothing at all. However, this clearly cannot be, for the drop falls to the ground readily, and therefore it must have weight. Moreover, a few thousand drops would fill the tumbler, and if a thousand drops weigh something, each drop must have a thousandth of that weight. The fact is that our feeling of effort is a very rough measure of weight, and does not enable us to compare small weights, or even to perceive them if they are very small. To know anything accurately about weight we must have recourse to an instrument which is contrived for the purpose of measuring weights with precision.

21. The Measuring of Weights. The Balance.