24. The Meaning of Heavy and Light—Specific Gravity.
We are in the habit of using the words heavy and light rather carelessly. We call things that are easily lifted light, and things that are hard to lift heavy. We say that sand, which is blown about by the wind, is light, and that a block of wood is heavy, and yet we have just seen that sand is heavier, bulk for bulk, than wood. In order to get rid of this double meaning, the weight of a volume of any liquid or solid, in proportion to the weight of the same volume of water at a known temperature and pressure, is called its specific gravity. Water being taken as 1, anything a volume of which is twice as heavy as the same volume of water is said to have the specific gravity 2; if three times, 3; if four and a half times, 4·5, and so on. Thus the specific gravity of any liquid or solid expresses its density in proportion to that of water under the same conditions. Sawdust, oil, and spirit have a less specific gravity than water, while treacle, sand, and quicksilver have a greater specific gravity. In this sense, the former three substances are light, while the latter three are heavy.
25. Things of greater Specific Gravity than Water sink in Water; Things of less Specific Gravity float.
Here are two tumblers of water. Throw some sand into one and some sawdust into the other. What happens? The sand sinks to the bottom, the sawdust floats at the top. We may stir them up as we like, but the sand will tumble to the bottom and the sawdust, as obstinately, rise to the top. Thus that which is lighter than the water floats, and that which is heavier (bulk for bulk) sinks. So, if we pour some oil into the water, it floats, and if we pour some coloured spirit in carefully, it also floats; while treacle and quicksilver sink to the bottom, just as the iron-filings do.
We saw that the iron-filings sank, because iron is heavier than water. Here is a piece of the thin tinned sheet-iron that they make tin boxes of. What will happen if we drop it into the water? It is heavier than water, bulk for bulk, and therefore it will sink as you see it does.
But now here is a “tin” canister made of this very same tinned sheet-iron. We drop that into the water, and you see it does not sink at all, but floats at the top as if it were made of cork. Here is a perplexity. We were sure just now that iron is heavier than water, and here is an iron box floating! Is this an exception to the law? Not at all; for what we said was that a thing would float if it were lighter, bulk for bulk, than water. Now let us weigh the tin box, and having weighed it let us next try to find out how much the same bulk of water weighs. This may be done very simply, for the walls of the box are very thin, so that the inside of the box is very nearly as large as the whole box. Consequently, if we fill the box with water, and then weigh the water, we shall find out, very nearly, what is the weight of a bulk of water as great as that of the box. But if we do this, we shall find that the water which was contained in the box, weighs very much more than the box does. So that, bulk for bulk, the box, although it is made of iron, is really lighter than water, and that is why it floats.
You will all have heard of the iron ships which are now so common, and you may have wondered how it is, that ships made of thick plates of iron riveted together, and weighing many thousand tons, do not go to the bottom. But they are nothing but our tin canisters on a great scale, and they float because each ship weighs less than a quantity of water of the same bulk does.
It is because of this property of water to bear up things lighter than itself, and because of that other property of being easily moved which the particles of water have, that the sea, and rivers, and canals, are such great highways for mankind.
For there is nothing so heavy that it may not be made to float in water, if the box which holds it is large enough to make the weight of the whole less than the weight of the same bulk of water. And then, having once got the weight to float, the particles of water are so easily moved, that the force of the winds, or of oars, or of paddles, readily causes it to slip through the water from one place to another.