53. Solution; Water Dissolves Salt.

If a spoonful of salt is put into a tumbler of cold water and the water is stirred, the salt swiftly vanishes from view; and, after a time, so far as our sense of vision goes, the water appears to be just what it was before. But if the water in the tumbler at first weighed five ounces and the salt weighed two ounces, the water in the tumbler will now weigh seven ounces; the water will now taste salt, the salt is said to be dissolved, and the solution is called brine. Moreover, the solution is said to be saturated, for if you put more salt in it will remain unchanged. Water, in fact, will dissolve two-fifths of its weight of salt and no more. If the brine thus formed is put into a wide dish, so that the water may evaporate; or if it is heated and the water boiled away; as fast as the water diminishes, a quantity of salt, equal to two-fifths of the water which is converted into steam, returns to the solid state and falls to the bottom of the vessel. And when all the water is driven off, the salt which remains will have exactly the weight, and all the other properties which it had before it was dissolved by the water.

Thus, contact with water has had a very singular effect upon the salt. It appears to have changed one of the properties of the salt, namely, its solidity, but to have left all the rest unaltered. We saw just now that powdered ice does not mix with ice-cold water, but that the fragments of ice remain solid. The moment, however, that the temperature rises, the cohesion, or sticking together of the molecules, which is the characteristic of the solid state, comes to an end; they become loose and free to move, and they mingle with the surrounding water. Or we may say that the ties which held the molecules of the solid together are dissolved, so that the solid water becomes fluid.

The resemblance of this process to the dissolving of salt in water is so obvious that, in common language, it is often said that a lump of salt or of sugar melts away in water; but if you try to make salt fluid by heat, you will have to expose it to a very high temperature, so that the conversion of salt from the solid state into the liquid state by solution in cold water is obviously a very different process from liquefaction by heat. Nevertheless the result is the same so far as the condition of the salt is concerned. The cohesion between its molecules is destroyed, and they distribute themselves evenly among the molecules of the water, just as the molecules of steam distribute themselves among the molecules of air. And, when you study chemistry, you will learn how it may be proved that the smallest drop of the solution of salt contains exactly the same proportion of salt as the whole does.

If brine is allowed to evaporate slowly, the molecules of the salt arrange themselves, as the water leaves them, in beautifully regular cubical crystals. You may see them form easily enough if you watch a drop of brine gradually dry up under a microscope. The salt crystals contain nothing but salt. If they are heated till they become red-hot they pass into the fluid state; and when still further heated, the fluid salt becomes a vapour or gas and, as such, flies off into the air, or volatilizes.

Thus we see that when salt and water are brought into contact, the salt undergoes a certain amount of change, while the water does not remain wholly unchanged. For brine no longer boils at 212°, but requires a considerably higher temperature. The salt, as it were, holds the water back, and prevents it from assuming the gaseous state under the same conditions as if it were pure, just as, in the previous case, the water held the alcohol back; or we may say that the force of heat which drives the molecules of liquid water apart, when steam is formed, has a greater resistance to overcome when salt is dissolved in the water. And just as the presence of alcohol lowers the freezing point of the water with which it is mixed, so does the presence of salt lower the freezing point of water. Sea water, which is a weak brine, begins to freeze at about 27°; and the ice which is formed is quite pure, while the remainder of the sea water becomes richer in salt.

If we mean by attraction that which opposes any force which tends to separate bodies, then we may say that the molecules of salt and those of water attract one another. And such attraction between molecules of matter of different kinds is called chemical attraction.

54. Quicklime and Water: Plaster of Paris and Water: Combination.

Quicklime is a substance obtained by heating chalk or limestone to redness. When pure, it is a white hard solid which can be made to pass into the liquid and gaseous states only at enormously high temperatures. If a lump of fresh quicklime be placed in a saucer and about one-third of its weight of water poured upon it, there will be a great turmoil, heat will be evolved, the water will disappear, and the lime will crumble down into a soft white powder. This operation is what bricklayers call slaking lime. And if no more water has been added than the proportion mentioned, the pure white powder which results will be solid and dry, the water having, to all appearance, vanished.

In the solution of salt we saw a solid become fluid under the influence of water; in the slaking of lime the fluid water enters into the structure of a solid. If more water is added, this solid dissolves or becomes liquid, as the salt did, and the solution is called limewater. By carefully managed evaporation of the water the lime may be recovered in the form of crystals, just as the salt was recovered. But there is this difference, that the salt crystals contain no water, while the lime crystals not only contain water, but contain exactly the same proportion as exists in slaked lime, that is to say, 18 parts water to 56 parts lime.