Electricity.

The mathematical and experimental elucidation of the phenomena of electricity, and the study of the relations of this form of energy with chemical and thermal action, had made extensive progress before 1837. But the determination of the influence of magnetism on light, the discovery of diamagnetism, of the influence of crystalline structure on magnetism, and the completion of the mathematical theory of electricity, all belong to the present epoch. To it also appertain the practical execution and the working out of the results of the great international system of observations on terrestrial magnetism, suggested by Humboldt in 1836; and the invention of instruments of infinite delicacy and precision for the quantitative determination of electrical phenomena. The voltaic battery has received vast improvements; while the invention of magneto-electric engines and of improved means of producing ordinary electricity has provided sources of electrical energy vastly superior to any before extant in power, and far more convenient for use.

It is perhaps this branch of physical science which may claim the palm for its practical fruits, no less than for the aid which it has furnished to the investigation of other parts of the field of physical science. The idea of the practicability of establishing a communication between distant points, by means of electricity, could hardly fail to have simmered in the minds of ingenious men since, well nigh a century ago, experimental proof was given that electric disturbances could be propagated through a wire twelve thousand feet long. Various methods of carrying the suggestion into practice had been carried out with some degree of success; but the system of electric telegraphy, which, at the present time, brings all parts of the civilised world within a few minutes of one another, originated only about the commencement of the epoch under consideration. In its influence on the course of human affairs, this invention takes its place beside that of gunpowder, which tended to abolish the physical inequalities of fighting men; of printing, which tended to destroy the effect of inequalities in wealth among learning men; of steam transport, which has done the like for travelling men. All these gifts of science are aids in the process of levelling up; of removing the ignorant and baneful prejudices of nation against nation, province against province, and class against class; of assuring that social order which is the foundation of progress, which has redeemed Europe from barbarism, and against which one is glad to think that those who, in our time, are employing themselves in fanning the embers of ancient wrong, in setting class against class, and in trying to tear asunder the existing bonds of unity, are undertaking a futile struggle. The telephone is only second in practical importance to the electric telegraph. Invented, as it were, only the other day, it has already taken its place as an appliance of daily life. Sixty years ago, the extraction of metals from their solutions, by the electric current, was simply a highly interesting scientific fact. At the present day, the galvano-plastic art is a great industry; and, in combination with photography, promises to be of endless service in the arts. Electric lighting is another great gift of science to civilisation, the practical effects of which have not yet been fully developed, largely on account of its cost. But those whose memories go back to the tinder-box period, and recollect the cost of the first lucifer matches, will not despair of the results of the application of science and ingenuity to the cheap production of anything for which there is a large demand.

The influence of the progress of electrical knowledge and invention upon that of investigation in other fields of science is highly remarkable. The combination of electrical with mechanical contrivances has produced instruments by which, not only may extremely small intervals of time be exactly measured, but the varying rapidity of movements, which take place in such intervals and appear to the ordinary sense instantaneous, is recorded. The duration of the winking of an eye is a proverbial expression for an instantaneous action; but, by the help of the revolving cylinder and the electrical marking-apparatus, it is possible to obtain a graphic record of such an action, in which, if it endures a second, that second shall be subdivided into a hundred, or a thousand, equal parts, and the state of the action at each hundredth, or thousandth, of a second exhibited. In fact, these instruments may be said to be time-microscopes. Such appliances have not only effected a revolution in physiology, by the power of analysing the phenomena of muscular and nervous activity which they have conferred, but they have furnished new methods of measuring the rate of movement of projectiles to the artillerist. Again, the microphone, which renders the minutest movements audible, and which enables a listener to hear the footfall of a fly, has equipped the sense of hearing with the means of entering almost as deeply into the penetralia of nature, as does the sense of sight.

Photography as an instrument of science.

That light exerts a remarkable influence in bringing about certain chemical combinations and decompositions was well known fifty years ago, and various more or less successful attempts to produce permanent pictures, by the help of that knowledge, had already been made. It was not till 1839, however, that practical success was obtained; but the 'daguerreotypes' were both cumbrous and costly, and photography would never have attained its present important development had not the progress of invention substituted paper and glass for the silvered plates then in use. It is not my affair to dwell upon the practical application of the photography of the present day, but it is germane to my purpose to remark that it has furnished a most valuable accessory to the methods of recording motions and lapse of time already in existence. In the hands of the astronomer and the meteorologist, it has yielded means of registering terrestrial, solar, planetary, and stellar phenomena, independent of the sources of error attendant on ordinary observation; in the hands of the physicist, not only does it record spectroscopic phenomena with unsurpassable ease and precision, but it has revealed the existence of rays having powerful chemical energy, or beyond the visible limits of either end of the spectrum; while, to the naturalist, it furnishes the means by which the forms of many highly complicated objects may be represented, without that possibility of error which is inherent in the work of the draughtsman. In fact, in many cases, the stern impartiality of photography is an objection to its employment: it makes no distinction between the important and the unimportant; and hence photographs of dissections, for example, are rarely so useful as the work of a draughtsman who is at once accurate and intelligent.

Astronomy,

The determination of the existence of a new planet, Neptune, far beyond the previously known bounds of the solar system, by mathematical deduction from the facts of perturbation; and the immediate confirmation of that determination, in the year 1846, by observers who turned their telescopes into the part of the heavens indicated as its place, constitute a remarkable testimony of nature to the validity of the principles of the astronomy of our time. In addition, so many new asteroids have been added to those which were already known to circulate in the place which theoretically should be occupied by a planet, between Mars and Jupiter, that their number now amounts to between two and three hundred. I have already alluded to the extension of our knowledge of the nature of the heavenly bodies by the employment of spectroscopy. It has not only thrown wonderful light upon the physical and chemical constitution of the sun, fixed stars, and nebulæ, and comets, but it holds out a prospect of obtaining definite evidence as to the nature of our so-called elementary bodies.

its relation to geology.

The application of the generalisations of thermotics to the problem of the duration of the earth, and of deductions from tidal phenomena to the determination of the length of the day and of the time of revolution of the moon, in past epochs of the history of the universe; and the demonstration of the competency of the great secular changes, known under the general name of the precession of the equinoxes, to cause corresponding modifications in the climate of the two hemispheres of our globe, have brought astronomy into intimate relation with geology. Geology, in fact, proves that, in the course of the past history of the earth, the climatic conditions of the same region have been widely different, and seeks the explanation of this important truth from the sister sciences. The facts that, in the middle of the Tertiary epoch, evergreen trees abounded within the arctic circle; and that, in the long subsequent Quaternary epoch, an arctic climate, with its accompaniment of gigantic glaciers, obtained in the northern hemisphere, as far south as Switzerland and Central France, are as well established as any truths of science. But, whether the explanation of these extreme variations in the mean temperature of a great part of the northern hemisphere is to be sought in the concomitant changes in the distribution of land and water surfaces of which geology affords evidence, or in astronomical conditions, such as those to which I have referred, is a question which must await its answer from the science of the future.