CHAPTER IV. THE MORPHOLOGY OF THE COMMON CRAYFISH: THE STRUCTURE AND THE DEVELOPMENT OF THE INDIVIDUAL.
In the two preceding chapters the crayfish has been studied from the point of view of the physiologist, who, regarding an animal as a mechanism, endeavours to discover how it does that which it does. And, practically, this way of looking at the matter is the same as that of the teleologist. For, if all that we know concerning the purpose of a mechanism is derived from observation of the manner in which it acts, it is all one, whether we say that the properties and the connexions of its parts account for its actions, or that its structure is adapted to the performance of those actions.
Hence it necessarily follows that physiological phenomena can be expressed in the language of teleology. On the assumption that the preservation of the individual, and the continuance of the species, are the final causes of the organization of an animal, the existence of that organization is, in a certain sense, explained, when it is shown that it is fitted for the attainment of those ends; although, perhaps, the importance of {138} demonstrating the proposition that a thing is fitted to do that which it does, is not very great.
But whatever may be the value of teleological explanations, there is a large series of facts, which have as yet been passed over, or touched only incidentally, of which they take no account. These constitute the subject matter of Morphology, which is related to physiology much as, in the not-living world, crystallography is related to the study of the chemical and physical properties of minerals.
Carbonate of lime, for example, is a definite compound of calcium, carbon, and oxygen, and it has a great variety of physical and chemical properties. But it may be studied under another aspect, as a substance capable of assuming crystalline forms, which, though extraordinarily various, may all be reduced to certain geometrical types. It is the business of the crystallographer to work out the relations of these forms; and, in so doing, he takes no note of the other properties of carbonate of lime.
In like manner, the morphologist directs his attention to the relations of form between different parts of the same animal, and between different animals; and these relations would be unchanged if animals were mere dead matter, devoid of all physiological properties—a kind of mineral capable of a peculiar mode of growth.
A familiar exemplification of the difference between teleology and morphology may be found in such works of human art as houses. {139}
A house is certainly, to a great extent, an illustration of adaptation to purpose, and its structure is, to that extent, explicable by teleological reasonings. The roof and the walls are intended to keep out the weather; the foundation is meant to afford support and to exclude damp; one room is contrived for the purpose of a kitchen; another for that of a coal-cellar; a third for that of a dining-room; others are constructed to serve as sleeping rooms, and so on; doors, chimneys, windows, drains, are all more or less elaborate contrivances directed towards one end, the comfort and health of the dwellers in the house. What is sometimes called sanitary architecture, now-a-days, is based upon considerations of house teleology. But though all houses are, to begin with and essentially, means adapted to the ends of shelter and comfort, they may be, and too often are, dealt with from a point of view, in which adaptation to purpose is largely disregarded, and the chief attention of the architect is given to the form of the house. A house may be built in the Gothic, the Italian, or the Queen Anne style; and a house in any one of these styles of architecture may be just as convenient or inconvenient, just as well or as ill adapted to the wants of the resident therein, as any of the others. Yet the three are exceedingly different.
To apply all this to the crayfish. It is, in a sense a house with a great variety of rooms and offices, in which the work of the indwelling life in feeding, breathing, moving, and reproducing itself, is done. But the {140} same may be said of the crayfish’s neighbours, the perch and the water-snail; and they do all these things neither better nor worse, in relation to the conditions of their existence, than the crayfish does. Yet the most cursory inspection is sufficient to show that the “styles of architecture” of the three are even more widely different than are those of the Gothic, Italian, and Queen Anne houses.
That which Architecture, as an art conversant with pure form, is to buildings, Morphology, as a science conversant with pure form, is to animals and plants. And we may now proceed to occupy ourselves exclusively with the morphological aspect of the crayfish.