FIG. 53.—Astacus fluviatilis.—A, living muscular fibres very highly magnified; B, a fibrilla treated with solution of sodium chloride; C, a fibrilla treated with strong nitric acid, s, septal lines; sz, septal zones; is, interseptal zones; a, transverse line in the interseptal zone.

{183}

This much is readily seen in a specimen of muscular fibre taken from any part of the body, and whether alive or dead. But the results of the ultimate optical analysis of these appearances, and the conclusions respecting the normal structure of striped muscle which may be legitimately drawn from them, have been the subjects of much controversy.

Quiescent muscular fibres from the chela of the forceps of a crayfish, examined while still living, without the addition of any extraneous fluid, and with magnifying powers of not less than seven or eight hundred diameters, exhibit the following appearance. At intervals of about 1‐4000th of an inch, very delicate but dark and well-defined transverse lines are visible; and these, on careful focussing, appear beaded, as if they were made of a series of close-set minute granules not more than 1‐20,000th to 1‐30,000th of an inch in diameter. These may be termed the septal lines (fig. [52], D and E, a; C, 1–5; fig. [53], s). On each side of every septal line there is a very narrow perfectly transparent band, which may be distinguished as the septal zone (fig. [53], sz). Upon this follows a relatively broad band of a substance which has a semi-transparent aspect, like very finely ground glass, and hence appears somewhat dark relatively to the septal zone. Upon this inter-septal zone (i s) follows another septal zone, then a septal line, another septal zone, an inter-septal zone, and so on throughout the whole length of the fibre. {184}

In the perfectly unaltered state of the muscle no other transverse markings than these are discernible. But it is always possible to observe certain longitudinal markings; and these are of three kinds. In the first place, the nuclei which, in the perfectly fresh muscle, are delicate transparent oval bodies, are lodged in spaces which taper off at each end into narrow longitudinal clefts (fig. [52], A, B). Prolongations of the protoplasmic sheath of the fibre extend inwards and fill these clefts. Secondly, there are similar clefts interposed between these, but narrow and merely linear throughout. Sometimes these clefts contain fine granules. Thirdly, even in the perfectly fresh muscle, extremely faint parallel longitudinal striæ 1‐7,000th of an inch, or thereabouts, apart, traverse the several zones, so that longer or shorter segments of the successive septal lines are inclosed between them. A transverse section of the muscle appears divided into rounded or polygonal areæ of the same diameter, separated from one another here and there by minute interstices. Moreover, on examination of perfectly fresh muscle with high magnifying powers, the septal lines are hardly ever straight for any distance, but are broken up into short lengths, which answer to one or more of the longitudinal divisions, and stand at slightly different heights.

The only conclusion to be drawn from these appearances seems to me to be that the substance of the muscle is composed of distinct fibrils; and that the longitudinal {185} striæ and the rounded areæ of the transverse section are simply the optical expressions of the boundaries of these fibrils. In the perfectly unaltered state of the tissue, however, the fibrils are so closely packed that their boundaries are scarcely discernible.

Thus each muscular fibre may be regarded as composed of larger and smaller bundles of fibrils imbedded in a nucleated protoplasmic framework which ensheaths the whole and is itself invested by the sarcolemma.

As the fibre dies, the nuclei acquire hard, dark contours and their contents become granular, while at the same time the fibrils acquire sharp and well-defined boundaries. In fact, the fibre may now be readily teased out with needles, and the fibrils isolated.

In muscle which has been treated with various reagents, such as alcohol, nitric acid, or solution of common salt, the fibrils themselves may be split up into filaments of extreme tenuity, each of which appears to answer to one of the granules of the septal lines. Such an isolated muscle filament looks like a very fine thread carrying minute beads at regular intervals.

The septal lines resist most reagents, and remain visible in muscular fibres which have been subjected to various modes of treatment; but they may have the appearance of continuous bars, or be more or less completely resolved into separate granules, according to circumstances. On the other hand, what is to be seen in {186} the interspace between every two septal lines depends upon the reagent employed. With dilute acids and strong solutions of salt, the inter-septal substance swells up and becomes transparent, so that it ceases to be distinguishable from the septal zone. At the same time a distinct but faint transverse line may appear in the middle of its length. Strong nitric acid, on the contrary, renders the inter-septal substance more opaque, and the septal zones consequently appear very well defined.