FIG. 58.—Astacus fluviatilis.—Surface views of the earlier stages in the development of the embryo, from the appearance of the blastopore (A) to the assumption of the nauplius form (F) (after Reichenbach, × about 23). bp, blastopore; c, carapace; fg, fore-gut involution; h, heart; hg, hind-gut involution; lb, labrum; mg, medullary groove; o, optic pit; p, endodermal plug partly filling up the blastopore; pc, procephalic processes; ta, abdominal elevation; 2, antennules; 3, antennæ; 4, mandibles.
By this invagination a most important step has been taken in the development of the crayfish. For, though the pouch is nothing but an ingrowth of part of the blastoderm, the cells of which its wall is composed {211} henceforward exhibit different tendencies from those which are possessed by the rest of the blastoderm. In fact, it is the primitive alimentary apparatus or archenteron, and its wall is termed the hypoblast. The rest of the blastoderm, on the contrary, is the primitive epidermis, and receives the name of epiblast. If the food-yelk were away, and the archenteron enlarged until the hypoblast came in contact with the epiblast, the entire body would be a double-walled sac, containing an alimentary cavity, with a single external aperture. This is the gastrula condition of the embryo; and some animals, such as the common fresh-water polype, are little more than permanent gastrulæ.
Although the gastrula has not the slightest resemblance to a crayfish, yet, as soon as the hypoblast and the epiblast are thus differentiated, the foundations of some of the most important systems of organs of the future crustacean are laid. The hypoblast will give rise to the epithelial lining of the mid-gut; the epiblast (which answers to the ectoderm in the adult) to the epithelia of the fore-gut and hind-gut, to the epidermis, and to the central nervous system.
The mesodermal structures, that is to say the connective tissue, the muscles, the heart and vessels, and the reproductive organs, which lie between the ectoderm and the endoderm, are not derived directly from either the epiblast or the hypoblast, but have a quasi-independent origin, from a mass of cells which first makes its {212} appearance in the neighbourhood of the blastopore, between the hypoblast and the epiblast, though they are probably derived from the former. From this region they gradually spread, first over the sternal, and then on to the tergal aspect of the embryo, and constitute the mesoblast.
Epiblast, hypoblast, and mesoblast are at first alike constituted of nothing but nucleated cells, and they increase in dimensions by the continual fission and growth of these cells. The several layers become gradually modelled into the organs which they constitute, before the cells undergo any notable modification into tissues. A limb, for example, is, at first, a mere cellular outgrowth, or bud, composed of an outer coat of epiblast with an inner core of mesoblast; and it is only subsequently that its component cells are metamorphosed into well-defined epidermic and connective tissues, vessels and muscles.
The embryo crayfish remains only a short while in the gastrula stage, as the blastopore soon closes up, and the archenteron takes the form of a sac, flattened out between the epiblast and the food-yelk, with which its cells are in close contact (fig. [57], C and D).[12] Indeed, as development proceeds, the cells of the hypoblast actually feed upon the substance of the food-yelk, and turn it to account for the general nutrition of the body. {213}
[12] Whether, as some observers state, the hypoblastic cells grow over and inclose the food-yelk or not, is a question that may be left open. I have not been able to satisfy myself of this fact.
The sternal area of the embryo gradually enlarges until it occupies one hemisphere of the yelk; in other words, the thickening of the epiblast gradually extends outwards. Just in front of the blastopore, as it closes, the middle of the epiblast grows out into a rounded elevation (fig. [58], t a; fig. [59], ab), which rapidly increases in length, and at the same time turns forwards. This is the rudiment of the whole abdomen of the crayfish. Further forwards, two broad and elongated, but flatter thickenings appear; one on each side of the middle line (fig. [58], p c). As the free end of the abdominal papilla now marks the hinder extremity of the embryo, so do these two elevations, which are termed the procephalic lobes, define its anterior termination. The whole sternal region of the body will be produced by the elongation of that part of the embryo which lies between these two limits.
A narrow longitudinal groove-like depression appears on the surface of the epiblast, in the middle line, between the procephalic lobes and the base of the abdominal papilla (fig. [58], C–F, m g). About its centre, this groove becomes further depressed by the ingrowth of the epiblast, which constitutes its floor, and gives rise to a short tubular sac, which is the rudiment of the whole fore-gut (fig. [57], C, and fig. [58], E, f g). At first, this epiblastic ingrowth does not communicate with the archenteron, but, after a while, its blind end combines with the front and lower part of the hypoblast, and an opening is formed by {214} which the cavity of the fore-gut communicates with that of the mid-gut (fig. [57], E). Thus a gullet and stomach, or rather the parts which will eventually give rise to all these, are constituted. And it is important to remark that, in comparison with the mid-gut, they are, at first, very small.
In the same way, the epiblast covering the sternal face of the abdominal papilla undergoes invagination and is converted into a narrow tube which is the origin of the whole hind-gut (fig. [57], C, and fig. [58], E, hg). This, like the fore-gut, is at first blind; but the shut front end soon applying itself to the hinder wall of the archenteric sac, the two coalesce and open into one another (fig. [57], E). Thus the complete alimentary canal, consisting of a very narrow, tubular, fore- and hind-gut, derived from the epiblast, and a wider and more sac-like mid-gut, formed of the whole hypoblast, is constituted.