broader stripe in the other. As the diagram shows (fig. 88) Castle has succeeded in producing in one direction a race in which the dorsal stripe has disappeared and in the other direction a race in which the black has extended over the back and sides, leaving only a white mark on the belly. Neither of these extremes occurs, he believes, in the ordinary hooded race of domesticated rats. In other words no matter how many of them came under observation the extreme types of his experiment would not be found.

Castle claims that the factor for hoodedness must be a single Mendelian unit, because if hooded rats are crossed to wild gray rats with uniform coat and their offspring are inbred there are produced in F2 three uniform rats to one hooded rat. Castle advances the hypothesis that factors—by which he means Mendelian factors—may themselves vary in much the same way as do the characters that they stand for. He argues, in so many words, that since we judge a factor by the kind of character it produces, when the character varies the factor that stands for it may have changed.

As early as 1903 Cuénot had carried out experiments with spotted mice similar to those of Castle with rats. Cuénot found that spotted crossed to uniform coat color gave in F2 a ratio of three uniform to one spotted, yet selection of those spotted mice with more white in their coat produced mice in successive generations that had more and more white. Conversely Cuénot showed that selection of those spotted mice that had more color in their coat produced mice with more and more color and less white. Cuénot does not however bring up in this connection the question as to how selection in these spotted mice brings about its results.

Without attempting to discuss these results at the length that they deserve let me briefly state why I think Castle's evidence fails to establish his conclusion.

In the first place one of the premises may be wrong. The three to one ratio in F2 by no means proves that all conditions of hoodedness are due to one factor. The result shows at most that one factor that gives the hooded types is a simple Mendelian factor. The changes in this type may be caused by modifying factors

that can show an effect only when hoodedness is itself present. That this is not an imaginary objection but a real one is shown by an experiment that Castle himself made which furnishes the ground for the second objection.

Second. If the factor has really changed its potency, then if a very dark individual from one end of the series is crossed to a wild rat and the second generation raised we should expect that the hooded F2 rats would all be dark like their dark grandparent. When Castle made this test he found that there were many grades of hooded rats in the F2 progeny. They were darker, it is true, as a group than were the original hooded group at the beginning of the selection experiment, but they gave many intermediate grades. Castle attempts to explain this by the assumption that the factor made pure by selection became contaminated by its normal allelomorph in the F1 parent, but not only does this assumption appear to beg the whole question, but it is in flat contradiction with what we have observed in hundreds of Mendelian cases where no evidence for such a contamination exists.

Later Castle crossed some of the extracted rats of average grade (3.01) from the plus series to the same wild race and got F2 hooded rats from this cross. These F2 hooded rats did not further approach the ordinary range but were nearer the extreme selected plus hooded rats (3.33) than were the F2's extracted from the first cross (2.59). Castle concludes from this that multiple factors can not account for the result. As a matter of fact, Castle's evidence as published does not establish his conclusion because the wild rats used in the second experiment may have carried plus modifiers. This could only be determined by suitable tests which Castle does not furnish. This is the crucial point, without which the evidence carries no conviction.