More recently one of Jennings's students, Middleton, has made a careful series of selection experiments with Stylonychia (fig. 90) in which he selected for lines showing more rapid

or slower rates of division. His observations seem to show that his selection separated two such lines that came from the same original stock. The rapidity of the effects of selection seems to preclude the explanation that pseudo-parthenogenesis has complicated the results. Nevertheless, the results are of such a kind as to suggest that they were due to selection of vegetative (somatic) differences and that no genetic change of factors was involved, for his conclusion that the rapidity with which the effects gained by long selection might be suddenly reversed when selection was reversed is hardly consistent with an interpretation of the results based on changes in the "potencies" of the factors present.

Equally striking are the interesting experiments that Jennings has recently carried out with Difflugia (fig. 91). This protozoon secretes a shell about itself which has a characteristic shape, and often carries spines. The opening at one end of the shell through which the protoplasm protrudes to make the pseudopodia is surrounded by a rim having a characteristic pattern. The protoplasm contains

several nuclei and in addition there is scattered material or particles called chromidia that are supposed to be chromatic in nature and related to the material of the nuclei, possibly by direct interchange.

Fig. 91. Difflugia Corona. (After Cash.)

When Difflugia divides, part of the protoplasm protrudes from the opening and a new shell is secreted about this mass which becomes a daughter individual. The behavior of the nucleus and of the chromidia at this time is obscure, but there is some evidence that their materials may be irregularly distributed

between parent and offspring. If this is correct, and if in the protozoa the chromatin has the same influence that it seems to have in higher animals, the mode of reproduction in Difflugia would be expected to give little more than random sampling of the germ plasm.

Fig. 92. Races of Difflugia. (After Leidy.)