There can be little doubt in some of these cases that the color of the animal may be a protection to it, but as has been hinted already, it is another question whether it acquired these colors because of their usefulness. Nevertheless, if the color is useful to its possessor, it is an adaptation in our sense of the word, without regard to the way in which it has been acquired. Even, for instance, if the resemblance were purely the outcome of chance in the sense that the color appeared without relation to the surroundings, it would still be an adaptation if it were of use to the animal under the ordinary conditions of life.

In the lower groups numerous cases in which animals resemble their surroundings could be given. Such cases are known in crustacea, worms, mollusks, hydroids, etc., and the possible value of these resemblances may be admitted in many instances.

It is rather curious that so few cases of adaptive coloration have been described for plants. No one supposes that the slate color of the lichen is connected with the color of the rocks on which it grows, in the sense that the resemblance is of any use to the lichen. Nor does the color of the marine red algæ serve in any way to protect the plants so far as is known. The green color of nearly all the higher plants is obviously connected with the substance, chlorophyl, that is essential for the processes of assimilation, and has no relation to external objects. But when we come to the colors of flowers we meet with curious cases of adaptation, at least according to the generally accepted point of view. For it is believed by many naturalists that the color of the corolla of flowering plants is connected with the visits of insects to the flowers, and these visits are in many cases essential for the cross-fertilization of the flowers. This adaptation is one useful to the species, rather than the individual, and belongs to another category.

The leaf of the Venus’s fly-trap, which suddenly closes together from the sides when a fly or other light body comes to rest on it, is certainly a remarkable adaptation. A copious secretion of a digestive fluid is poured out on the surface of the leaf, and the products of digestion are absorbed. There can be no question that this contrivance is of some use to the plant. In other insectivorous plants, the pitcher plants, the leaves are transformed into pitchers. In Nepenthes a digestive fluid is secreted from the walls. A line of glands secreting a sweet fluid serves to attract insects to the top of the pitcher, whence they may wander or fall into the fluid inside, and there being drowned, they are digested. A lidlike cover projecting over the opening of the pitcher is supposed to be of use to keep out the rain.

In Utricularia, a submerged water-plant, the tips of the leaves are changed into small bladders, each having a small entrance closed by an elastic valve opening inwards. Small snails and crustaceans can pass into this opening, to which they are guided by small outgrowths; but once in the cup they cannot get out again, and, in fact, small animals are generally found in the bladders where they die and their substance is absorbed by forked hairs projecting into the interior of the bladder.

The cactus is a plant that is well suited to a dry climate. Its leaves have completely disappeared, and the stem has become swollen into a water-reservoir. “It has been estimated that the amount of water evaporated by a melon cactus is reduced to one six-hundredth of that given off by any equally heavy climbing-plant.”

Fig. 1.—The fertilization of Aristolochia Clematitis.
A, portion of stem with flowers in axil of leaf in different stages.
B and C, longitudinal sections of two flowers, before and after fertilization. (After Sachs.)

Sachs gives the following account of the fertilization process in Aristolochia Clematitis, which he refers to as a conspicuous and peculiar adaptation. In Figure [1 A] a group of flowers is shown, and in Figure [1 B and C] a single flower is split open to show the interior. In B a small fly has entered, and has brought in upon its back some pollen that has stuck to it in another flower. The fly has entered through the long neck which is beset with hairs which are turned inwards so that the fly can enter but cannot get out. In roaming about, the pollen that is sticking to its back will be rubbed against the stigmatic surface. “As soon as this has taken place the anthers, which have been closed hitherto, dehisc and become freely accessible,” as a result in the change in the stigma and of the collapse of the hairs at the base of the enlargement which has widened. The fly can now crawl under the anthers, and, if it does so, new pollen may stick to its back. At this time the hairs in the throat dry up, and the fly can leave its prison house, Figure [1 C]. If the fly now enters another flower this is fertilized by repeating the process. The unfertilized flowers stand erect with widely open mouths. As soon as they have been fertilized they bend down, as seen in Figure [1 A], and at the same time the terminal flap bends over the open mouth of the throat, “stopping the entrance to the flies, which have now nothing more to do here.”

Adjustments of the Individual to Changes in the Environment