Despite the different interpretation that Von Baer gave to this doctrine of resemblance the older view of recapitulation continued to dominate the thoughts of embryologists throughout the whole of the nineteenth century.

Louis Agassiz, in the Lowell Lectures of 1848, proposed for the first time the theory that the embryo of higher forms resembled not so much lower adult animals living at the present time, as those that lived in past times. Since Agassiz himself did not accept the theory of evolution, the interpretation that he gave to the recapitulation theory did not have the importance that it was destined to have when the animals that lived in the past came to be looked upon as the ancestors of existing animals.[[8]] But with the acceptation of the theory of evolution, which was largely the outcome of the publication of Darwin’s “Origin of Species” in 1859, this new interpretation immediately blossomed forth. In fact, it became almost a part of the new theory to believe that the embryo of higher forms recapitulated the series of ancestral adult forms through which the species had passed. The one addition of any importance to the theory that was added by the Darwinian school was that the history of the past, as exemplified by the embryonic development, is often falsified.

[8]. Carl Vogt in 1842 suggested that fossil species, in their historical succession, pass through changes similar to those which the embryos of living forms undergo.

Let us return once more to the facts and see which of them are regarded at present as demanding an explanation. These facts are not very numerous and yet sufficiently apparent to attract attention at once when known.

The most interesting case, and the one that has most often attracted attention, is the occurrence of gill-clefts in the embryos of reptiles, birds, and mammals. These appear on each side of the neck in the very early embryo. Each is formed by a vertical pouch, that grows out from the wall of the pharynx until it meets the skin, and, fusing with the latter, the walls of the pouch separate, and a cleft is formed. This vertical cleft, placing the cavity of the pharynx in communication with the outside, is the gill-slit. Similar openings in adult fishes put the pharynx in communication with the exterior, so that water taken through the mouth passes out at the sides of the neck between the gill filaments that border the gill-slits. In this way the blood is aerated. The number of gill-slits that are found in the embryos of different groups of higher vertebrates, and the number that open to the exterior are variable; but the number of gill-openings that are present in the adults of lower vertebrates is also variable. No one who has studied the method of development of the gill-slits in the lower and higher vertebrates will doubt for a moment that some kind of relation must subsist between these structures.

In the lowest adult form of the vertebrates, amphioxus, the gill-system is used largely as a sieve for procuring food, partly also, perhaps, for respiration. In the sharks, bony fishes, and lower amphibians, water is taken in through the mouth, and passes through the gill-slits to the exterior. As it goes through the slits it passes over the gills, that stand like fringes on the sides of the slits. The blood that passes in large quantities through the gills is aerated in this way. In the embryos of the higher vertebrates the gill-slits may appear even before the mouth has opened, but in no case is there a passage of water through the gill-slits, nor is the blood aerated in the gill-region, although it passes through this part on its way from the heart to the dorsal side of the digestive tract. It is quite certain that the gill-system of the embryo performs no respiratory function.[[9]]

[9]. This statement is not intended to prejudice the question as to whether the presence of the gill-slits and arches may be essential to the formation of other organs.

In the higher amphibians, the frogs for example, we find an interesting transition. The young embryo, when it emerges from the egg-membranes, bears three pairs of external gills that project from the gill-arches into the surrounding water. Later these are absorbed, and a new system of internal gills, like those of fishes, develops on the gill-arches. These are used throughout the tadpole stage for respiratory purposes. When the tadpole is about to leave the water to become a frog, the internal gills are also absorbed and the gill-clefts close. Lungs then develop which become the permanent organs of respiration.

There are two points to be noticed in this connection. First, the external gills, which are the first to develop, do not seem to correspond to any permanent adult stage of a lower group. Second, the transition from the tadpole to the frog can only be used by way of analogy of what is supposed to have taken place ancestrally in the reptiles, birds, and mammals, since no one will maintain that the frogs represent a group transitional between the amphibians and the higher forms. However, since the salamanders also have gills and gill-slits in the young stages, and lose them when they leave the water to become adult land forms, this group will better serve to illustrate how the gill-system has been lost in the higher forms. Not that in this case either, need we suppose that the forms living to-day represent ancestral, transitional forms, but only that they indicate how such a remarkable change from a gill-breathing form, living in the water, might become transformed into a lung-breathing land form. Such a change is supposed to have taken place when the ancestors of the reptiles and the mammals left the water to take up their abode on the land.

The point to which I wish to draw especial attention in this connection is that in the higher forms the gill-slits appear at a very early stage; in fact, as early in the mammal as in the salamander or the fish, so that if we suppose their appearance in the mammal is a repetition of the adult amphibian stage, then, since this stage appears as early in the development of the mammal as in the amphibians themselves, the conclusion is somewhat paradoxical.