A minute and accurate study of the early stages of division or cleavage of the egg of annelids has shown a remarkable agreement throughout the group. The work of E. B. Wilson on nereis, and on a number of other forms, as well as the subsequent work of Mead, Child, and Treadwell on other annelids, has shown resemblances in a large number of details, involving some very complicated processes.[[10]]
[10]. On the other hand it should not pass unnoticed that Eisigh as shown in one form (in which, however, the eggs are under special conditions being closely packed together) that the usual type of cleavage is altered.
Not only is the same method of cleavage found in most annelids, but the same identical form of division is also present in many of the mollusks, as shown especially by the work of Conklin, Lillie, and Holmes. This resemblance has been discussed at some length by those who have worked out these results in the two groups. The general conclusion reached by them is that the only possible interpretation of the phenomenon is that some sort of genetic connection must exist between the different forms; and while not explicitly stated, yet there is not much doubt that some at least of these authors have had in mind the view that the annelids and mollusks are descended from common ancestors whose eggs segmented as do those of most of the mollusks and annelids of the present day. This conclusion is, I believe, of more far-reaching importance than has been supposed, and may furnish the key that will unlock the whole question of the resemblance of embryos to supposed ancestral forms. It is a most fortunate circumstance that in the case of this cell lineage the facts are of such a kind as to preclude the possibility that the stages in common could ever have been ancestral adult stages. If this be granted then only two interpretations are possible: the results are due either to a coincidence, or to a common embryonic form that is repeated in the embryo of many of the descendants. That the similarity is not due to a coincidence is made probable from the number and the complexities of the cleavage stages.
I believe that we can extend this same interpretation to all other cases of embryonic resemblance. It will explain the occurrence of gill-slits in the embryo of the bird, and the presence of a notochord in the higher forms in exactly the same way as the cleavage stages are explained. But how, it may be asked, can we explain the apparent resemblance between the embryo of the higher form and the adult of lower groups. The answer is that this resemblance is deceptive, and in so far as there is a resemblance it depends on the resemblance of the adult of the lower form to its own embryonic stages with which we can really make a comparison. The gill-slits of the embryo of the chick are to be compared, not with those of the adult fish, but with those of the embryo of the fish. It is a significant fact, in this connection, that the gill-slits appear as early in the embryo of the fish as they do in the bird! The notochord of the embryo bird is comparable with that of the embryo of amphioxus, and not with the persistent notochord in the adult amphioxus. Here also it is of the first importance to find that the notochord appears both in the embryo bird and in amphioxus at the very beginning of the development. The embryo bird is not fishlike except in so far as there are certain organs in the embryo fish that are retained in the adult form. The embryo bird bears the same relation to the embryo fish that the early segmentation stages of the mollusk bear to the early segmentation stages of the annelid. There are certain obvious resemblances between this view and that of Von Baer, but there are also some fundamental differences between the two conceptions.
Von Baer thought that within each group the embryonic development is the same up to a certain point. He supposed that the characters of the group are the first to appear, then those of the order, class, family, genus, and, finally, of the species. He supposed that two similar species would follow the same method of development until the very last stage was reached, when each would then add the final touches that give the individual its specific character. We may call this the theory of embryonic parallelism. Here there is an important difference between my view and that of Von Baer, for I should not expect to find the two embryos of any two species identical at any stage of their development, but at most there might exist a close resemblance between them.
Von Baer’s statement appears to be erroneous from a modern point of view in the following respects. We know that in certain large groups some forms develop in a very different way from that followed by other members of the group, as shown by the cephalopods, for instance, in the group of mollusks. Again, it is entirely arbitrary to assume that the group-characters are the first to appear, and then successively those of the order, family, genus, species. Finally, as has been said above, we do not find the early embryos of a group identical; for with a sufficient knowledge of the development it is always possible to distinguish between the embryos of different species, as well as between the adults, only it is more difficult to do so, because the embryonic forms are simpler. The most fundamental difference between the view of Von Baer and modern views is due to our acceptation of the theory of evolution which seems to make it possible to get a deeper insight into the meaning of the repetition, that carries us far ahead of Von Baer’s position. For with the acceptance of this doctrine we have an interpretation of how it is possible for the embryonic stages of most members of a group to have the same form, although they are not identical. There has been a continuous, although divergent, stream of living material, carrying along with it the substance out of which the similar embryonic forms are made. As the stream of embryonic material divided into different paths it has also changed many of the details, sometimes even all; but nevertheless it has often retained the same general method of development that is associated with its particular composition. We find the likeness, in the sense of similarity of plan, accounted for by the inheritance of the same sort of substance; the differences in the development must be accounted for in some other way.
Among modern writers Hurst alone has advanced a view that is similar in several respects to that which I have here defended. It may be well to give his statement, since it brings out certain points of resemblance with, as well as certain differences from, my own view.[[11]] He says: “Direct observation has shown that, when an animal species varies (i.e. becomes unlike what it was before) in adult structure, those stages in the development which are nearest the adult undergo a similar, but usually smaller, change. This is shown in domestic species by the observations of Darwin, and the result is in exact harmony with the well-known law of Von Baer, which refers to natural species, both nearly related and widely dissimilar. Von Baer’s observations as well as Darwin’s, and as well as those of every student who has ever compared the embryos of two vertebrate species, may be summarized as follows:—
[11]. Hurst, C. H., “Biological Theories, III,” “The Recapitulation Theory,” Natural Science, Vol. ii., 1893.
“Animals which, though related, are very similar in the adult state, resemble each other more closely in early stages of development, often, indeed, so closely as to be indistinguishable in those early stages. As development proceeds in such species, the differences between the two embryos compared become more and more pronounced.” On this point, which is an essential one, I cannot agree with Hurst; for I do not think that the facts show that the early stages of two related forms are necessarily more and more alike the farther back we go. The resemblance that is sometimes so striking in the earlier stages is due to the fewer points there are for comparison, and to the less development of the parts then present. Hurst continues: “If similar comparisons could be instituted between the ancestral species and its much modified descendants, there is no reason for doubting that a similar result would be reached. This, indeed, has been done in the case of some breeds of pigeons, which we have excellent reasons for believing to be descended from Columba livia. True, C. livia is not a very remote ancestor, but I do not think that will vitiate the argument. Let me quote Darwin verbatim: ‘As we have conclusive evidence that the breeds of the pigeon are descended from a single wild species, I have compared the young within twelve hours after being hatched; I have carefully measured the proportions (but will not here give the details) of the beak, width of mouth, length of nostril, and of eyelid, size of feet, and length of leg in the wild, parent species, in pouters, fantails, runts, barbs, dragons, carriers, and tumblers. Now some of these birds when mature differ in so extraordinary a manner in the length and form of the beak, and in other characters, that they would certainly have been ranked as distinct genera if found in a state of nature. But when the nestling birds of these several breeds were placed in a row, though most of them could just be distinguished, the proportional differences in the above specified points were incomparably less than in the full-grown birds. Some characteristic points of difference—for instance, that of the width of the mouth—could hardly be detected in the young. But there was one remarkable exception to this rule, for the young of the short-faced tumbler differed from the young of the wild-rock pigeon, and of the other breeds in almost exactly the same proportions as in the adult state.’”
Hurst concludes that: “The more the adult structure comes to be unlike the adult structure of the ancestors, the more do the late stages of development undergo a modification of the same kind. This is not mere dogma, but it is a simple paraphrase of Von Baer’s law. It is proved true not only by the observations of Von Baer and of Darwin, already referred to, but by the direct observation of every one who takes the trouble to compare the embryos of any two vertebrates, provided only he will be content to see what actually lies before him and not the phantasms which the recapitulation theory may have printed on his imagination.”