Another example is that of the fern, Lomaria procera, from New Zealand, Australia, South Africa, and South America. If the forms from only one country be considered, they appear to be different species; but if all the forms from the different parts of the world be taken into account, they constitute a connected group, and are united into one large species.

It will be seen, therefore, that the limits of a collective species are determined solely by the deficiencies in the genealogical tree of the elementary species. If all the elementary species in one country were destroyed, then the forms living in other countries that had been previously held together because of those which have now been destroyed, would, after the destruction, become true species. In other words: “The Linnæan species are formed by the disappearance of other elementary species, which at first connected all forms. This mode of origin is a purely historical process, and can never become the subject of experimental investigation.” Spencer’s famous expression, the “survival of the fittest,” is incomplete, and should read the “survival of the fittest species.” It is, therefore, not the study of Linnæan species that has a physiological interest, but it is the study of the elementary species of which the Linnæan species are made up, that furnishes the all-important problem for experimental study.

De Vries gives a critical analysis of a number of cases in which new races have been formed under domestication. He shows very convincingly that, whenever the result has been the outcome of the selection of fluctuating variations, the product that is formed can only be kept to its highest point of development by the most rigid and ever watchful care. If selection ceases for only a few generations, the new form sinks back at once to its original level. Many of our cultivated plants have really arisen, not by selection of this sort, but by mutations; and there are a number of recorded cases where the first and sudden appearance of a new form has been observed. In such cases as these there is no need for selection, for if left to themselves there is no return to the original form. If, however, after a new mutation has appeared in this way, we subject its fluctuating variations to selection, we can keep the new form up to its most extreme limit, but can do nothing more.

Another means, frequently employed, by which new varieties have been formed is by bringing together different elementary species under cultivation. For instance, there are a large number of wild elementary species of apples, and De Vries believes that our different races of apples owe their origin in part to these different wild forms. Crossing, cultivation, and selection have done the rest.

De Vries points out some of the inconsistencies of those who have attempted to discriminate between varieties and species. The only rule that can be adhered to is that a variety differs from a species to which it belongs in only one or in a few characters. Most so-called varieties in nature are really elementary species, which differ from their nearest relatives, not in one character only, but in nearly all their characters. There is no ground, De Vries states, for believing them to be varieties. If it is found inconvenient to rank them under the names of the old Linnæan species, it will be better, perhaps, to treat them as subspecies, but De Vries prefers to call them elementary species.

In regard to the distribution of species in nature, it may be generally stated that the larger the geographical domain so much the larger is the number of elementary species. They are found to be heaped up in the centre of their area of distribution, but are more scattered at the periphery.

In any one locality each Linnæan species has as a rule only one or a few elementary species. The larger the area the more numerous the forms. From France alone Jordan had brought together in his garden 50 elementary species of Draba verna. From England, Italy, and Austria there could be added 150 more. This polymorphism is, De Vries thinks, a general phenomenon, although the number of forms is seldom so great as in this case.

Amongst animals this great variety of forms is not often met with, yet amongst the mammalia and birds of North America there are many cases of local forms or races, some of which at least are probably mutations. This can only be proven, however, by actually transferring the forms to new localities in order to find out if they retain their original characters, or become changed into another form. It seems not improbable that many of the forms are not the outcome of the external conditions under which the animal now lives, but would perpetuate themselves in a new environment.

From the evidence that his results have given, De Vries believes it is probable that mutation has occurred in all directions. In the same way that Darwin supposed that individual or fluctuating variations are scattering, so also De Vries believes that the new forms that arise through mutation are scattering. On this point it seems to me that De Vries may be too much prejudiced by his results with the evening primrose. If, as he supposes, many forms, generally ranked as varieties, are really elementary species, it seems more probable that the mutation of a form may often be limited to the production of one or of only a very few new forms. The single variations, or sports, point even more strongly in favor of this interpretation. Moreover, the general problem of evolution from a purely theoretical point of view is very much simplified, if we assume that the kinds of mutating forms may often be very limited, and that mutations may often continue to occur in a direct line. On this last point, De Vries argues that the evidence from paleontology cannot be trusted, for all that we can conclude from fossil remains is that certain mutations have dominated, and have been sufficiently abundant to leave a record. In other words, the conditions may have been such that only certain forms could find a foothold.

De Vries asks whether there are for each species periods of mutation when many and great changes take place, and periods when relatively little change occurs. The evidence upon which to form an opinion is scanty, but De Vries is inclined to think that such periods do occur. It is at least certain from our experience that there are long periods when we do not see new forms arising, while at other times, although we know very few of them, epidemics of change may take place. The mutative period which De Vries found in the evening primrose is the best-known example of such a period of active mutation. Equally important for the descent theory is the idea that the same mutation may appear time after time. There is good evidence to show that this really occurs, and in consequence the chances for the perpetuation of such a form are greatly increased. Delbœuf, who advocated this idea of the repeated reappearance of a new form, has also attempted to show that if this occurs the new form may become established without selection of any kind taking place,—the time required depending upon the frequency with which the new form appears. This law of Delbœuf, De Vries believes, is correct from the point of view of the mutation theory. It explains, in a very simple way, the existence of numerous species-characters that are entirely useless, such, for instance, as exist between the different elementary species of Draba verna. “According to the selection theory only useful characters can survive; according to the mutation theory, useless characters also may survive, and even those that may be hurtful to a small degree.”