Fig. 22.—Two upper rows Planaria lugubris. Lower row Planaria maculata. Upper row. Tail-piece cut off obliquely in front of genital pore. Figures show mode of regeneration. Middle row. Piece including old pharynx cut off by two cross-cuts, regenerating head and tail. Lower row. Piece cut off as last, regenerating head and tail.
If a piece is cut from the anterior part of a worm by two oblique and parallel cuts, the new head appears at one side of the anterior cut-surface, and the new tail at the other side of the posterior cut-surface. The new pharynx appears in the new material of the posterior part in the middle line. Thus the middle lines of the new head and tail and pharynx lie in different positions, yet these parts are subsequently brought into the same line. This is done by the head extending more forward and becoming broader, the tail growing backward and also becoming broader. The old piece becomes narrower at the same time. These three changes going on simultaneously produce a new symmetrical worm. In one form, Planaria lugubris, the symmetrical form is reached largely by the forward growth and the enlargement of the head, and the growth backward and the enlargement of the tail ([Fig. 22], B). In Planaria maculata the old part shifts, so that it forms a new median line connecting the median line of the new head and new tail. This is best shown when the piece includes the old pharynx ([Fig. 22], C). The pharynx is also shifted, so that its anterior end points towards the side at which the new head lies, and its posterior end towards the new tail. The result is that a new symmetrical worm is formed, as shown by the series of figures in [Fig. 22], C. In Planaria maculata the changes take place largely in the old part, and the old material extends throughout the entire length of the new worm. In Planaria lugubris the change takes place largely in the new parts ([Fig. 22], B). The general method in the latter species by which the symmetry is attained can be best shown by cutting the worm in two by an oblique cut just in front of the genital pore ([Fig. 22], A). The posterior piece produces a new head at the side, and a new pharynx appears along the border between the new and the old parts, as shown in these figures. Its posterior end touches the middle line of the old part, and from this point it extends obliquely across the new tissue towards the middle of the new head. As regeneration goes on the new head is carried farther forward, it becomes larger, and the main region of new growth is found to be, in the figure, to the left side of the new part. As a result of these changes the new head turns forward, and comes to lie nearer the middle line of the old part. The pharynx is also turned more forward, and finally, as the new parts enlarge, the symmetrical form is produced. The internal factors that are involved in the development of these oblique pieces are very difficult to analyze. The position of the new head and tail at one side of the cut-edge is the most difficult phenomenon of all to explain. We may, I think, safely regard the first new material that is proliferated along the cut-edge as totipotent, and our special problem resolves itself into discovering what factor or factors determine that the new head is to form at the most anterior end of the new material, and the new tail at the most posterior end. If we assume that the result is in some way connected with the influence of the old part on the new, and that this influence is of such a sort that the more anterior part of the old tissue determines that one side of the head must be at the most anterior edge, we have at least a formal explanation of the position of the head at the side. Given the position of the new head fixed at one side, its breadth will be determined by the maximum breadth possible for the formation of a new head. This is also in part an assumption, but it has at least certain general facts of observation in its favor. The oblique position of the new head is the result of its symmetrical development in the new material in the same way that the position of the tail of the fish or of the tadpole is the result of the symmetrical formation of the new tail on the oblique surface. The subsequent changes, by means of which a symmetrical worm is developed, are the result of different rates of growth in the different parts. In this connection the most important fact is that the growth takes place most rapidly where it will bring about the new form. This problem, which is one of the most fundamental in connection with the phenomena of development and of regeneration, will be more fully discussed in a later chapter.
A number of assumptions have been made in the above attempt to give an analysis of the formation of a head at the side of an oblique surface. That these assumptions are not entirely arbitrary, but have a certain amount of evidence in their favor, can, I think, be shown. The new material that first appears is supposed to be totipotent, in the sense that any part of it may produce any part of the structure that develops from this material. That this is probable is shown by the following experiment. If a cross-piece is cut from a worm, and then split lengthwise into halves, each half will produce a new head at the anterior edge of the piece. This result shows, at least, that from the tissue lying to the right or to the left of the middle line new material may be formed from which a whole head may develop. The new head does not stand at first with its middle axis in line with the middle of the old piece, i.e. it does not stand squarely at the anterior end of the half-piece, but more towards the inner side of the piece. It may appear that the old part has sufficient influence on the new part to shift the axis of the latter toward the old middle line, but while some such influence may be present, it is probable that the position of the head is in part the outcome of another factor, viz. the presence at the inner side of the piece of an undeveloped new side, with which the explanation of the less development of the inner side of the head is also connected.
Fig. 23.—Planaria maculata. A. Cross-piece, allowed to regenerate, then cut in two lengthwise, as indicated by line. a-a⁵. Regeneration of left half.
If a cross-piece is cut from a worm and kept until a small amount of new tissue appears over the anterior and posterior cut-surfaces, and if then the piece is split in two lengthwise, there will develop from each piece a new head out of the new material over the anterior surface. The result shows that the new material is at first totipotent, in the sense that it may still produce one or more heads according to the conditions. It is possible, of course, that the formation of the new head may have begun at the time of the experiment, but if it had, the development had not gone so far that a new arrangement was impossible. If, however, the piece is not cut lengthwise until just before the formation of a head ([Fig. 23], A), then each half-piece produces at first a half-head, that completes itself later at the cut-side.
Another experiment shows even more satisfactorily that the material over an anterior cut-edge may produce one or more new heads according to the conditions, and that the result is not connected with the region from which the new material is derived. If the anterior end of a planarian is cut off and then an oblong piece is removed from the middle of the worm, as shown in [Fig. 24], A, it will be found, if the side parts are kept from fusing together in the middle line, that a new head develops at the anterior end of each part, as shown in [Fig. 24], c, c¹. If, on the other hand, the two sides come together and fuse in the middle line, as shown in [Fig. 24], a, b, the new material that appears over their anterior ends becomes continuous and produces a single head. In this case, although the middle part of the old tissue has been removed, a single head develops that is normal in all respects, and the eyes are not nearer together than when the middle part is present, as when regeneration takes place from an anterior cross-cut surface.