THE INFLUENCE OF THE NUCLEUS ON REGENERATION

The influence of the nucleus on the process of regeneration has been shown in a number of unicellular forms. It was first observed by Brandt in 1877 that pieces of Actinosphærium eichhornii that contain a nucleus assume the characteristic form, but pieces without a nucleus fail to do so. Schmitz (’79) found that when the wall of the many-celled siphonocladus is broken, the protoplasm rounds up into balls, some of which contain one or more nuclei, while others may be without nuclei. The nucleated pieces produce a new membrane, and later become typical organisms, but non-nucleated pieces do not form a new membrane, and soon disintegrate. Nussbaum (’84, ’86) cut into pieces the ciliate infusoria, oxytricha and gastrostyla. Those pieces that contained a nucleus quickly regenerated a new whole organism of smaller size, that had the power of further reproduction, while the pieces that did not contain a part of the nucleus showed no evidence of regeneration; and, although they continued to move about for as much as two days, they subsequently disintegrated. Gruber obtained the same result on another ciliate infusorian, Stentor cœruleus. He found that, although the non-nucleated pieces close over the cut-surface, and move about for some time, they eventually die. He further showed that a non-nucleated piece containing a portion of a new peristome in process of formation will continue to develop this new peristome, although a new peristome is never produced by a non-nucleated piece under other circumstances. He believes that if the new peristome has begun to be formed under the influence of the old nucleus, it may continue its development after the piece is severed from its connection with the nucleus. A non-nucleated piece containing a part of the old peristome does not produce a new peristome from the old piece. Gruber observed that a non-nucleated piece of amœba behaves differently from a nucleated piece, and dies after a time.

Klebs found that when certain algæ are put into a solution that does not seriously injure them, but causes the protoplasm to contract into balls, some of these contain nuclei, others not. If, for instance, threads of zygnema, or of spirogyra, are placed in a 16 per cent solution of sugar, the protoplasm of each cell breaks up into one or more clumps, some with nuclei, others without. Both kinds may remain alive for a time; some of the non-nucleated pieces may live for even six weeks. The nucleated pieces surround themselves at once, when returned to water, with a new cellulose wall, but the non-nucleated pieces remain naked. The latter can, nevertheless, produce in the sunlight new starch that is used up in the dark and is made anew on the return to light.[29]

Balbiani (’88) found that non-nucleated pieces of cytrostomum, trachelus, and protodon failed to regenerate, and Verworn (’89 and ’92) obtained similar results on several other protozoa. Similar facts have been made out by Hofer (’89), Haberlandt and Gerassimoff (’90). Palla (’90) found that in certain cases non-nucleated pieces, especially those from cells in growing regions, can produce a new cell wall; while more recently Townsend (’97) has shown in several forms that non-nucleated pieces do not produce a new cell wall unless they are connected by protoplasmic threads with nucleated pieces. The most delicate connection suffices to enable a non-nucleated piece to make a cell wall, even when the nucleated piece lies in one cell and the non-nucleated in another, the two being connected by a thread of protoplasm that passes through the intervening wall.

If we examine somewhat more in detail some of these cases, we find that when a form like stylonychia is cut into three pieces, the two end-pieces without a nucleus fail to regenerate, while the central piece makes a new entire organism of smaller size. If stentor is cut into three pieces, each piece containing one or more nodes of the macronucleus, each produces a new stentor. If, however, a piece is cut off so that it does not contain a part of the macronucleus, it fails to regenerate. Verworn (’95) succeeded in removing the central capsule with its contained nucleus from the large radiolarian, Thallasicolla nucleata. The non-nucleated animal remained alive for some time, but eventually died. The nucleated capsule developed a new outer zone with processes like those in the normal animal. If the nucleus is taken from the capsule, the capsule dies, but shows some traces of the formation of an outer zone. If the protoplasm is removed as far as possible from around the nucleus, the latter does not regenerate new protoplasm, but dies after a time. Verworn concludes that the protoplasm cannot carry on all its normal functions without the nucleus, or the nucleus without the protoplasm.

These experiments sufficiently demonstrate that non-nucleated pieces are unable to regenerate. If we attempt to examine further into the meaning of the phenomenon, we find a few things that appear to have a bearing on the result. The behavior of the non-nucleated pieces shows that the metabolism of the cell has been changed after the removal of the nucleus. In some cases the protoplasm is not able to carry out the process of digestion of the included food substances. This process may be due to some interchange that goes on between the nucleus and the protoplasm, which is stopped by the removal of the nucleus, and, in consequence, the metabolism of the cell is changed. The lack of regenerative power may be due to this change in the metabolism. It cannot be claimed, however, that the result is due to a lack of energy in the pieces, for the incessant motion of the cilia in some kinds of pieces, that goes on for several days, shows that a large store of energy is present. Unfortunately, we do not know enough of the relation that subsists between the nucleus and the protoplasm to be able to state to what the lack of regenerative power is due.

Loeb (’99) has suggested that the lack of power of non-nucleated pieces may be due to a lack of oxidation. The nucleus contains substances which, according to Spitzer, are favorable to the process of oxidation. When the nucleus is removed, the oxidation is supposed by Loeb to be too low to allow the process of regeneration to take place. In support of this view, he points out that while non-nucleated pieces of infusoria live for only two or three days, non-nucleated pieces of plants containing chlorophyl may be kept alive for five or six weeks. Non-nucleated pieces containing chlorophyl can obtain a supply of oxygen, owing to the breaking down of carbon dioxide in the chlorophyl-bodies, and the consequent setting free of oxygen. It should be pointed out, on the other hand, as opposed to Loeb’s view, that non-nucleated pieces of amœba have been kept alive for fourteen days; and that despite the better oxidation that may take place in non-nucleated pieces of plants, regeneration does not take place.

It has been found that non-nucleated pieces of the egg of the sea-urchin do not segment or develop, and the result is the same whether the pieces come from fertilized or unfertilized eggs. If, however, a spermatozoon enters one of these pieces, the piece will segment, and, as Boveri and later Wilson have shown, it will produce an embryo.

Boveri also tried fertilizing a non-nucleated piece of the egg of one species of sea-urchin with a spermatozoon of another species. He found that the embryo that develops is of the type of the species from which the spermatozoon has come, and he concluded that the nucleus determines the character of the larva, and that the protoplasm has no influence on the form. The evidence from which Boveri drew his conclusion is not beyond question. It has been shown by Seeliger (’95) and myself (’95) that if whole eggs of the species Sphærechinus granularis, used by Boveri, are fertilized by the spermatozoa of the other species, Echinus microtuberculatus, there is great variability in the form of the resulting larvæ. Most of them are intermediate in character between the types of larvæ of the two species, but a few of them are like the paternal type. Vernon (’99) has more recently shown that the character of hybrids is dependent upon the ripeness of the sexual products of the two parents. If, for instance, the eggs (sphærechinus) are at the minimum of maturity, the hybrids are more like the male (strongylocentrotus).

It remains, therefore, still to be shown whether or not the protoplasm has any influence on the form of larva that comes from a non-nucleated piece, fertilized by a spermatozoon of another species. That the nucleus of the male does have an influence on the form of the animal is abundantly shown by the inheritance of the peculiarities of the father through the chromatin of the spermatozoon.