These results agree, in the main, with those in which the piece is surrounded by moist air, and give evidence of an inner polarity that is an important factor in the regeneration. The results show that in a piece with the basal end in water and the rest of the piece in the air the tendency to produce roots above the water is suppressed by the dryness of the air. In an inverted piece, however, with the apex in water, the innate tendency to produce roots at the basal end is strong enough to overcome the effect of the dryness of the air to suppress their development. The abundance of water absorbed by the apex of the piece makes the development of the roots possible under these conditions despite the dryness of the air.[33]
There is another factor connected with the submergence of the end of the stem in water that can be shown by putting a longer part of the end under the water. Neither roots, if it is a basal end, nor leaf-buds, if it is an apical end, appear on the deeper parts of the submerged end. This is due, in all probability, to the insufficiency of oxygen in the water, and as a result the buds are prevented from developing.
It can be shown that light has also an influence on the regeneration of pieces, and that it has a stronger influence on some plants than on others. In some plants roots develop only on that side of the stem that is less illuminated. In Lepismium radicans, for instance, adventitious roots are produced by the plant even in dry air. Pieces of the stem can produce roots on either the upper or the lower surface, according to which side is less illuminated. A piece of the stem of this plant that had been kept in the dark produced two roots, one above and one below,—one, therefore, opposed to the direction of the action of gravity, and the other in the direction of that action. Even in pieces of the willow, suspended in a moist atmosphere, roots develop better and over a greater length of the stem on the less illuminated side.
Although the experiments with pieces of young willow-twigs may seem to show that gravity is not a factor in regulating the development of the new parts, the results show in reality only that internal factors have a preponderating influence. By means of another series of experiments it can be shown that gravity does have an influence on the production of the new parts. It is evident that in order to test the action of gravity, pieces must be placed in different positions in relation to the vertical. It will be found, if this is done, that different results are obtained according to the angle that the piece makes with the vertical. If a piece is suspended in a moist atmosphere, with its apical end upward, the smaller the angle that the piece makes with the vertical so much the more are the leaf-buds that develop confined to the upper part of the piece, and so much the more do they develop from all sides of the upper end; conversely, the greater the angle with the vertical, i.e. the more nearly horizontal the position of the piece, so much the more are the leaf-buds that develop found along the upper side of the apical end (as well as around the end). If the piece is placed in a horizontal position, the leaf-buds develop not only around the apex, but they develop along the entire length of the upper surface, best, however, near the apical end.
If similar pieces are suspended in oblique positions, with the basal end upward, different results are obtained. In the preceding experiment the polarity of the piece and gravity act together, while in this experiment their action is opposed. Although there is a great amount of variability in the results, yet the action of gravity is found to have less influence on the result than has the inner polarity, and the influence of the latter is so much greater that the action of gravity is hardly noticeable.
The roots do not show as markedly the influence of gravity as do the leaf-buds, yet Vöchting has found that the position in which they appear varies with the position of the piece with respect to the vertical.
Fig. 34.—After Vöchting. A. End of a piece of Heterocentron diversifolium. Apex downward. B. Piece of same bent and suspended “with concave-side upward.” C. Piece of a stem of Salix viminalis. Apex upward. A piece of the side has been lifted up and two wedges inserted.
In the preceding cases the rudiments of the leaf-buds and of the roots were probably present in most cases, so that gravity only awakens them into activity. In other forms, as, for instance, in heterocentron, it is possible to show that gravity may even determine the production of new buds. If pieces of the end of a branch, including the growing point, are suspended vertically, some with the apical end upward, others with the basal end upward ([Fig. 34], A), the former produce roots only around the base, but in the latter roots appear frequently, not only at the base, but even extending along the stem. They appear not only at the nodes, where pre-formed rudiments may be present, but also in the internodes, where there are no rudiments of roots.