In still another way the same thing may be shown. If the crab is anæsthetized, and a leg cut off outside of the breaking-joint, it is not, at the time, thrown off—the nervous system, through whose action the breaking off takes place, being temporarily thrown out of order. After recovery, although the leg is thrown off in a large number of cases, it is sometimes retained. In such cases it is found that from the cut-end the missing part is regenerated. In this case also we find that regeneration takes place from a part of the leg that can never regenerate under natural circumstances.

The third and fourth legs of the hermit-crab cannot be thrown off, but they have the power of regeneration at any level at which they may be cut off. They are in a position where they can seldom be injured, and I have never found them absent or injured in crabs caught in their natural environment. The soft abdomen is protected by the snail’s shell. At the end of the abdomen the last pair of abdominal appendages serve as anchors to hold the crab in the shell. These appendages are large and very hard, and can seldom be injured unless the abdomen itself is broken, and under these circumstances the crab dies. Yet if these appendages are cut off they regenerate perfectly, and after a single moult cannot be distinguished from normal ones.

The more anterior abdominal appendages are present only on one side of the adult, although they are present on both sides of the larva, and, to judge from a comparison with other crustacea, these appendages have degenerated completely on one side, and have become rudimentary in the male, even on the side on which they are present. They too will regenerate if they are cut off. In the female these appendages are used to carry the eggs, and are, therefore, of use. They also have a similar power of regeneration. The maxillæ and maxillipeds of the hermit-crab have likewise the power of regeneration, as have also the two pairs of antennæ and the eyes.

In other decapod crustacea also it has been shown that the power of regeneration of the appendages is well developed. It has been long known that the crayfish and the lobster can regenerate lost parts. The first pair of legs, or chelæ, in these forms has a breaking-joint, at which the leg can be thrown off, yet in the crayfish I have seen that if the leg is cut off inside of the breaking-joint it will regenerate. The four pairs of walking legs do not possess a breaking-joint, but may be thrown off in some cases at a corresponding level. They regenerate from this level, as well as nearer the body and farther beyond this region. Przibram has recently shown that, in a number of crustacea, regeneration of the appendages takes place, even when the entire leg is extirpated as completely as possible.

Newport has shown that the myriapods can regenerate their legs, and it is known that several forms have the power of breaking off their legs in a definite region at the base if the legs are injured, and I have observed in Cermatia forceps that this takes place even when the animal is thrown into a killing fluid. Newport (’44) has also shown that when the legs of a caterpillar are cut off new ones regenerate during the pupa stage. It has been long known[42] that the legs of mantis can regenerate, and Bordage, who has recently examined the question more fully, has shown that a breaking-joint is present at the base of the leg. The tarsus of the cockroach also regenerates, producing only four, instead of the five, characteristic segments.[43]

A number of writers have recorded the regeneration of the legs of spiders.[44] Schultz, who has recently examined more thoroughly the regeneration of the legs in some spiders, finds that the leg is renewed if cut off at any level. He removed the leg most often at the metatarsus, but also at the tibia, and generally between two joints. In some cases the leg was cut off at the coxa, at which level it is generally found to be lost under natural conditions. Wagner observed in tarantula that when the leg is removed at any other place than at the coxa, the animal brings the wounded leg to its jaws, and bites it off down to the coxa. In the Epeiridæ, that Schultz chiefly made use of, this never happened. He observed, however, even in these forms, that when the leg is cut off at the coxa it regenerates better than

Fig. 38.—A-F. After King. A. Starfish with four arms regenerating at different levels. B. Three arms regenerating from disk. C. Arm split in two producing two arms. D. Arm cut off obliquely, regenerating at right angles to cut-surface. E. Starfish split between two arms, producing two new arms from split. F. An arm, with a small piece of disk attached, regenerating three new arms. G. After P. and F. Sarasin, Starfish (Linckia multiformis) with four new arms springing from end of one arm. Interpreted as a new starfish, but probably only multiple arms (see C, above).

when cut off at any other level. Schultz states that we see here an excellent example of how regeneration is influenced by natural selection, since regeneration takes place best where the leg is most often broken off. On the other hand, the author hastens to add that since regeneration also takes place when the leg is cut off at any other level, this shows that the power to regenerate is characteristic of all parts of the organism, and is not merely a phenomenon of adaptation, as Weismann believes. It seems highly improbable that a spider could ever lose a leg in the middle of a segment, i.e. between two joints, since the segments are hard and strong and the joints much weaker; but nevertheless the leg has the power to regenerate also from the middle of the segment, if cut off in this region.