It would not be profitable to enter into a general discussion of the many cases of absorption, or of atrophy of parts of the organism, but a few examples may be given that have a general bearing on the topics discussed in this chapter. The more noticeable cases arise through disuse of an organ, as shown, for example, in the decrease in size of the muscles of man when they are not used. Since this may take place in a single group of disused muscles, when no such change occurs in other muscles of the same individual that are in use, the most obvious explanation is that the decrease is due directly to disuse. Since the blood that goes to all the parts is the same, the diminution cannot be ascribed to any special substance in the blood. The flow of blood into the disused muscle is less than when the muscle is used, and it might be supposed that atrophy is directly caused by the lessened nourishment that the muscle receives. There is also the possibility that the decrease is brought about by the accumulation of certain substances in the disused muscle itself, but since, in general, the breaking down of the muscle is most active when it is used, it seems improbable that the result can be due directly to this cause, unless indeed it could be shown that the substances produced by a disused muscle are different from those in an active muscle.

Lack of food, as is known, may cause organs to decrease, the fat first disappearing, and then in succession in vertebrates, the blood, the muscles, the glands, the bones, and the brain. Certain poisons may also affect definite organs and bring about a decrease in size, as when the thymus and mammæ decrease from iodine poisoning, and certain extensor muscles after lead poisoning. Atrophy may also be brought about by pressure on a part, as when the feet or waist are compressed. In old age there may be a decrease in some of the organs, as in the bones, the testes and ovary, and even in the heart.

Degenerative changes appear even in the young stages of some animals, as when the tail of the tadpole is absorbed and the arms of the pluteus of the sea-urchin are absorbed by the rest of the embryo.

Especially interesting are the cases of absorption that take place when organs are transplanted to unusual situations in the body. Zahn transplanted a fœtal femur to the kidney, where it continued to grow but was later absorbed. Fischer transplanted the leg of a bird’s embryo to the comb of a cock, where it continued at first to grow, but after some months degenerated. The spleen, the kidney, and the testis have been transplanted, but they degenerate, and, in general, the larger the transplanted piece the more probable its degeneration. Small pieces of the skin have been transplanted from one individual to another, and it has been found that small pieces maintain themselves better than large pieces. Ribbert’s recent experiments in transplanting small pieces of different organs have been more successful than earlier experiments in which larger pieces were used. The first difficulty seems to be in establishing a blood supply to the new part, in order to nourish it. If the piece is quite small, it can absorb the substances, necessary to keep it alive, from the surrounding tissues, until the new blood supply has developed.

In the lower animals grafting experiments have been more successful, because the parts can remain alive for a longer time. It is important to find, however, that even in these cases, a part grafted upon an abnormal region of the body is usually absorbed. Rand shows that if the tentacles of hydra become displaced, as sometimes happens when a piece containing the old tentacles regenerates ([Fig. 48], A-A³), the misplaced tentacles are absorbed; and I can confirm this result. In hydra, the hollow tentacles are in direct communication with the central digestive tract, and a displaced tentacle seems to be in as good a position as a normal one, as far as its nourishment is concerned, yet it becomes absorbed.

Rand also found, in other experiments, that when the anterior end of a hydra is grafted upon the wall of another hydra, the piece may maintain itself if it is large; but it is slowly shifted toward the base of the hydra to which it is grafted, and then the two separate in this region. If the graft is small, it may be entirely absorbed into the wall of the animal to which it is attached.

Marshall found that if the head of a hydra is partially split in two, each half-head completes itself (as Trembley had already shown). The body then begins slowly to separate into two parts, beginning at the angle between the two heads, until finally the two parts completely separate. King (1900) has repeated the experiment in a large number of cases with the same result. It seemed that the division might be brought about by the weight of the halves causing the gradual separation of the body, but King has shown that this is not the case, for, when a double form remained hanging with its head down, it still divided into two parts ([Fig. 47], A). In this case, the weight of the two heads would cause the parts to come together rather than to separate, if gravity had any influence of the sort suggested. Marshall and King have also shown that if the posterior end of a hydra is split in two, the two parts do not continue to separate, but one of the two, if the pieces have been split some distance forward, may become constricted from the other, and, producing new tentacles at its apical end, become a new individual.

I have carried out a series of experiments on planarians of a somewhat similar nature. If the posterior end is split in two, the separation extending into the anterior part of the worm ([Fig. 44], C), each half completes itself, but the halves do not separate unless they happen to tear themselves apart. If one of the pieces is cut off, not too near the region of union with the other half, a new posterior end, replacing that cut off, regenerates. If, however, the piece is cut off quite near the region or union of the halves, the piece that is left may be absorbed.

The absorption of misplaced parts in the lower animals cannot be explained, I think, by any lack of nutrition, especially in the case of the tentacles of hydra. The result may be due either to the displaced part not receiving exactly those substances, perhaps food substances, that it gets in its normal position, or it may be due to some formative influence. At present we are not in a position to decide between these alternatives, and, while the former view seems more tangible, and the latter quite obscure, the latter may nevertheless be found to contain the true explanation. If the view that I have adopted in regard to the organization—namely, that it can be thought of as acting through a system of tensions peculiar to each kind of protoplasm—is correct, it may be possible to account for the absorption of misplaced parts by some such principle as this.

INCOMPLETE REGENERATION