Tubularia absorbs its old hydranth-heads if placed in an aquarium, and regenerates new ones. It may even absorb the hydranth while growing in an aquarium, as Dalyell has shown, and presumably, therefore, also under natural conditions. After each regeneration the new stalk behind the head increases in length.
In plants, in which there is a continuous apical growth, new parts are being always added at the end of the stem, and old parts are continually dying, as seen in palms. Most trees and shrubs in temperate climates lose their leaves once a year and produce new ones in the spring. Since the new leaves develop from the new shoots at the end of the stem and branches, the old ones can, only in a general way, be said to be renewed.
That a very close relation exists between the process of physiological regeneration and restorative regeneration will be sufficiently evident from the preceding illustrations. We do not gain any insight into either of the processes, so far as I can see, by deriving the one from the other, for the process of restorative regeneration may be, in point of time, as old as that of physiological regeneration. This does not mean, of course, that the same factors may not be present in both cases. So similar are the two processes that several naturalists have attempted to show how the process of restorative regeneration has been derived from physiological regeneration. Barfurth, recognizing the resemblance between the two processes, speaks of restorative regeneration as a modification of physiological regeneration, and Weismann also supports this point of view. He says: “Physiological and pathological regeneration obviously depend on the same causes, and often pass one into the other, so that no real line of demarcation can be drawn between them. We nevertheless find that in those animals in which the power of regeneration is extremely great physiologically, it is very slight pathologically. This proves that a slight power of pathological regeneration cannot possibly depend on a general regenerative force present within the organism, but rather that this power can be provided in those parts of the body which require a continual, periodic regeneration; in other words, the regenerative power of a part depends on adaptation.” It is, I think, erroneous to state “that in those animals in which the power of regeneration is extremely great physiologically, it is very slight pathologically.” All that we are justified in concluding from the evidence is that in some cases in which physiological regeneration takes place, as in the vertebrates, pathological (restorative) regeneration may not be well developed; but even in these forms restorative regeneration is certainly present, and present especially in internal organs, as in the salivary gland, in the liver, and in the eye, which are little exposed to injury. How far physiological regeneration takes place in the tissues of the lower animals we do not know at present, except in a few cases, but far from supposing it to be absent, it may be as well developed as in higher forms. Weismann’s further conclusion, that because in some animals physiological regeneration is very great and restorative regeneration very slight, therefore the latter cannot “depend on a general regenerative force within the organism,” is, I think, quite beside the mark. In this connection we should not fail to notice a difference between these two regenerative processes that several writers have also called attention to, viz. that the power of cell-multiplication and the formation of new cells in each kind of tissue does not carry with it the power of restorative or even of physiological regeneration, in cases where several kinds of tissue make up an organ. For instance, if the leg of the mammal is cut off, the old cells may give rise to new ones, but the processes that would bring about the formation of the new leg are not present, or, rather, if present, cannot act. Thus, although the production of new cells from each of the different parts of the leg of a mammal may take place, yet the conditions are unfavorable to the subsequent formation of a new leg out of the proliferated cells. We should not infer that this power does not exist, but that under the conditions it cannot be carried out. The assumption that physiological regeneration is the forerunner of restorative regeneration, in the sense that historically the former preceded the latter and furnished the basis for the development of the latter, cannot be shown, I think to be even probable. This way of looking at the two processes puts them, I believe, in a wrong relation to each other. We find both processes taking place in the simplest forms as in the unicellular protozoa, and present throughout the entire animal kingdom without any connection, excepting so far as they both depend on the general processes of growth characteristic of each organ and of each animal. This leads us to consider the general question of regeneration in its relation to the phenomena of growth.
REGENERATION AND GROWTH
It has been pointed out in several cases in which external factors influence the growth of a plant, or of an animal, that the same factors play a similar part in the regeneration. The action of gravity on the growth of plants has been long known, and that it is a factor in the regeneration of a piece of a plant has also been shown. The only animal in which gravity has been definitely shown to be an important factor during growth is antennularia, and it has been found that gravity is also a factor in the regeneration of the same form. Not only is this influence shown in the growth of the new part that has developed, but the same influence seems to be one of the factors that determines where the new growth takes place. This latter relation is known in only a few cases, for instance in plants, according to Vöchting, and in antennularia, according to Loeb, so that, until further evidence is forthcoming, it is best not to extend this generalization too far; but it seems not impossible that it may be generally true. How an external factor may determine the location of new growth, as well as the subsequent development of the new part, we do not know at present.
In regard to the internal factors that influence the growth and the regeneration of new parts, we are almost completely in the dark. In cases of hypertrophy of the kidney, etc., the evidence seems to show that a specific substance, urea, that is normally taken from the blood by this organ may, if present in more than average amounts, excite the cells to greater activity and to growth, but whether the urea itself does this directly, or only indirectly through the greater functional activity of the cells, has not, as we have seen, been ascertained. That growth is influenced by internal factors can be shown, at least in certain cases, even although we cannot refer to the definite chemical or physical factors in the process. Some experiments that I have made on the tails of fish show very clearly the action of an internal factor. If the tail of fundulus is cut off obliquely, as indicated by the line 2-2 in [Fig. 40], A, new material appears in a few days along the outer cut-edge. It appears to be at first equal in amount along the entire edge. As the material increases in width, it grows faster over
Fig. 40.—A. Tail of Fundulus heteroclitus. Lines indicate levels at which B and C were cut off. B. Regenerating from cross-cut. C. Regenerating from oblique cut. D, E. Regenerating from two oblique surfaces. G. Tail of stenopus. H, I. Tail of last cut off squarely and obliquely.
that part of the edge that is nearer the base of the tail ([Fig. 40], C). This growth continues to go on faster on the lower side, until the rounded form of the tail is produced. If we make the oblique cut so that the part nearer the base of the tail is on the upper side, the result is the same in principle; the upper part of the new material grows faster than any other part. If we make two oblique cuts on the same tail, as shown in [Fig. 40], D, or as in E, the new part grows faster in each case on that part of the cut-edge that lies nearer the base of the tail. These results may be supposed to be due to the better nourishment of the new tissues nearer the base of the tail; but it is not difficult to show that the difference in the rate of growth over different parts of the cut-edge is not due to this factor. If, for example, we cut off the tail of one fish squarely near the outer end, as shown in [Fig. 40], F, 1-1, and the tail of a second near the base of the tail, as shown in Fig. 40, F, 2-2, and of a third by an oblique cut that corresponds to a cut extending from the upper side of the cut-edge of the tail of the first fish to the lower cut-edge of the tail of the second fish, as shown in [Fig. 40], F, we find that the rate of growth over the first and second tails is about the same as that of the lower side of the third tail. In other words, the maximum rate of growth that is possible for the entire oblique edge is carried out only near the lower edge, and the growth of the rest of the new material is held in check. By means of another experiment a similar phenomenon can be shown. If the bifurcated tail of a young scup (Stenopus chrysops) is cut off by a cross-cut ([Fig. 40], G, 1-1), it will be found that at first the new material is produced at an equal rate along the entire cut-edge; but it soon begins to grow faster at two points, one above and the other below, so that the characteristic swallow-tail is formed at a very early stage ([Fig. 40], H) and before the new material has grown out to the level of the notch of the old tail. If the tail of another individual is cut off by an oblique cut ([Fig. 40], G, 2-2), we find, as shown in [Fig. 40], I, that at two points the new tail grows faster, but the lower lobe faster than the upper one.