The fifth question has many sides. It involves us on the one hand in a historical question of the origin of self-division, and on the other hand in a discussion of the stimulus that brings about, not only the division, but the changes that precede the division in those cases in which the new part develops before division takes place.
Several zoologists have held that the process of self-division followed by regeneration has been the starting-point for the process of propagation preceded by regeneration. Von Kennel, for instance, maintains that self-division in some of the annelids has arisen in this way. He says: “We recognize everywhere in the animal kingdom the power of organisms to replace lost parts, and we call this regeneration. It may be developed in very different degrees in animals, and, as a rule, only those parts of the body have the power of regeneration that still possess the organs that are essential for independent existence. The higher the organization of the animal, so much the less is its power of regeneration, perhaps, because the division of labor of the different organs has gone so far that extensive injuries cannot be repaired.... There is no doubt that this power is adaptive, in a high degree, to preserve the species under unfavorable conditions, so that they are much better off in the battle for existence than are the animals that live under the same conditions but have not the power of regeneration.... The power of regeneration that gives the animal a better chance in the battle for existence and, therefore, makes more certain the continuance and the distribution of the species will be, as is well known from numerous observations, in a high degree inherited, indeed even increased so that its descendants will possess that power in a higher degree than their forefathers; and, in consequence, a much smaller stimulus (motive) suffices, than at first, to bring about the division of the parts.” After showing, according to the usual formula, that the process of regeneration is useful, and, therefore, would come under the guidance of natural selection, von Kennel proceeds to show how the result is connected with an external stimulus! He asks: “Can accidental injuries account for the result (viz. for the division in lumbriculus, planarians, and starfish), since how few starfish are there with regenerating arms in comparison with the enormous number of uninjured individuals? Should we not rather look for the external stimuli that have initiated the process of self-division?” “Animals that have developed the power of regeneration by a long process of inheritance will have acquired along with this the property of easier reaction to all external adverse conditions. In a sense the sensitiveness for such stimuli is sharpened, and the animal responds at once by breaking up. In the same way the ear of a good musician becomes more sensitive through practice. If we think of the same stimulus as regularly recurring, and as always answered in the same way, then we may look upon it as a normal condition of the life of the animal and its response as also a normal process in the animal. If, for instance, the breaking into pieces of lumbriculus is a consequence of the approach of cold weather or of other external conditions, then the organization of this animal must react by breaking up in consequence of its adaptation to the conditions acquired through heredity. The self-division becomes a normal process under normally recurring conditions. If the organism has been accustomed to respond through numerous generations, and, therefore, its sensitiveness has become highly developed, it will be seen that it may be influenced by the slightest change in the unfavorable conditions, and although, at first, the change may not be sufficiently strong to cause the animal to divide, yet the introductory changes leading to the division may be started, which will in turn make the division, when it occurs, easier and the animal that possesses this responsiveness more likely to survive. This would be the case if a slow process of constriction took place, so that, at the time of separation, no wounds of any size are formed.” “By a further transfer of the phenomenon, a partial, or even a complete, regeneration may set in before division takes place.” “We find changes like this in the series of forms, Lumbriculus, Ctenodrilus monostylos, Ctenodrilus pardalis, Nais, Chætogaster. It appears in a high degree probable that the series has originated in the way described. Perhaps zoologists will find after some thousands of years that lumbriculus propagates as does nais at present.” In this way von Kennel tries to show how the process of regeneration, that takes place before division, has been evolved from a simple process of breaking up in response to unfavorable conditions. The imaginary process touches on debatable ground, to say the least, at every turn, and until some of the principles involved have been put on a safer basis, it would be unprofitable to discuss the argument at any length.
We should never lose sight of the fact that the arranging of a series like that beginning with lumbriculus and ending with chætogaster is a purely arbitrary process and does not rest on any historical knowledge of how the different methods originated or how they stand related, and no one really supposes, of course, that these forms have descended from each other but at most that the more complicated processes may have been at first like those shown in other forms. Even this involves assumptions that are far from being established, and it seems folly to pile up assumption on top of assumption in order to build what is little more than a castle in the air.
REGENERATION AND BUDDING
In several groups of animals a process of budding takes place that presents certain features not unlike those of self-division. It is difficult, in fact, to draw a sharp line between budding and self-division, and although several writers have attempted to make a distinction between the two processes, it cannot be said that their definitions have been entirely successful. It is possible to make a distinction in certain cases that may be adopted as typical, but the same differences may not suffice in other cases. For instance, the development of a new individual at the side of the body of hydra is a typical example of budding, while the breaking up of lumbriculus or of a planarian into pieces that form new individuals is a typical example of division. In a general way the difference in the two processes involves the idea that a bud begins as a small part of the parent animal, and increases in size until it attains a typical form. It may remain permanently connected with the parent, or be separated off. By division we mean the breaking up of an organism into two or more pieces that become new individuals, the sum-total of the products of the division representing the original organism. Von Kennel first sharply formulated this distinction, and it has been also supported by von Wagner, who has attempted to make the distinction a hard and fast one;[70] but as von Bock has pointed out, there are forms like pyrosoma and salpa in which the non-sexual method of propagation partakes of both peculiarities, and in Syllis ramosa the individuals appear to bud from the sides, while in other annelids a process of division takes place. Von Bock assumes, therefore, as more probable, that budding and self-division are only different phenomena of the same fundamental process. It might be better, I think, to go even further in order to clear this statement from a possible historical implication, and state only that the two processes involve some of the same factors.
Budding occurs in several groups of the animal kingdom. There are numerous cases in the protozoa, such, for instance, as that in noctiluca. In the sponges buds are formed that go to build up a colony in most instances. In the cœlenterates cases of lateral budding are found in nearly all the main groups, and in one and the same individual, as in the scyphistoma of aurelia, in fact both budding and division occur. In the polyzoa, in the ascidians, and in cephalodiscus lateral budding takes place. In the rhabdocoel turbellarians, and in some of the annelids, we find chains of new individuals produced by a process that is often spoken of as budding. It is convenient, however, to distinguish these cases of axial budding from those of lateral budding; for, while they both involve an increase in the products over that of the original animal, the axial relations in lateral buds are established in a new plane, while in axial budding the main axis of the new animal is a part of that of the old, and this difference may involve different factors. The process of budding does not occur in the insects, spiders, crustaceans, mollusks, ctenophores, brachiopods, nematodes, vertebrates, or in several other smaller groups.
This examination shows that there are groups in which both processes take place, viz. cœlenterates, planarians, annelids; and others in which budding alone takes place, viz. ascidians, polyzoa, cephalodiscus; and one group at least in which division, but not budding, takes place, the echinoderms. It is obvious that from the occurrence of the process of budding in the animal kingdom we cannot infer anything as to its relation to division or to regeneration.
It has been pointed out that in the flowering plants, in which the growth takes place by means of buds, the power of terminal regeneration is very slightly developed, and its absence is sometimes accounted for on the ground that the new growth takes place by means of the development of lateral buds. If by this statement it is meant that buds being present the suppression of regeneration in other regions may occur, then there may be a certain amount of truth in the statement. If, however, it is intended to mean that because a plant has acquired the power of reproducing new parts by means of buds it has, therefore, lost the power to regenerate in other ways (or has never developed the power to regenerate), then the argument is, I think, fallacious; for we find even in flowering plants that the new buds sometimes arise from the new part, or callus, that forms over the cut-end, and this process resembles a real regenerative process. We also find that hydroids that produce lateral buds also regenerate freely from an exposed end. But we are at present so much in the dark in regard to the causes that bring about budding in organisms that a discussion of the possibilities would hardly be profitable.
AUTOTOMY
The process of autotomy differs only in degree from the process of self-division. In autotomy the part thrown off does not produce a new animal. The breaking off of the tail of the lizard at the base, if the outer part is injured, is an example of a typical process of autotomy. The throwing off of the crab’s leg, if the leg is injured, is also another typical case of autotomy. There is a definite breaking-joint at the base of the crab’s leg at which the separation always takes place ([Fig. 45], A 1-1). The breaking-joint is in the middle of the second segment from the base of the leg, where there is found, on the outside of the leg, a ring-like groove that marks the place of rupture. A comparison of the legs of the crab with the walking legs of the crayfish, or of the lobster, shows that the groove in the crab’s legs corresponds to a joint in the legs of the two other forms. In the crayfish and lobster the walking legs generally break off at this same level, although by no means as easily or with as much certainty as in the crab. The first pair of legs of the crayfish and lobster, carrying the large claws, have also a breaking-joint at the base of the leg similar to that in the crab’s leg, and these legs break off in the living animal always at the breaking-joint.