The wispy edges of the cloud at the brightest part are cirrus, the fleecy cloud at the extreme top is a thin alto-cumulus, and the dark base of the sky is stratus. But this stratus is too high for that classification and so they call it alto-stratus. This sky shows that the temperatures are moderate, a cold sky being much better packed, and a warm one fluffier. The fact that a veil of cirrus has not preceded the heavier clouds argues that the coming storm will not be of much consequence. This sort of cloud bank arising after a period of cold weather is the best possible prediction of a thaw. Slight rain might follow within a few hours.
Three cyclones a year form over the lower Ohio River basin. On account of their origin over land instead of over water they rarely acquire much energy. Once in a decade such depressions deepen rapidly. It was one of these Ohio River storms that increased greatly in energy while moving from West Virginia to the Jersey Coast that gave Philadelphia her Christmas Blizzard, a surprise to her citizens and to the Weather Bureau, for most of the snow fell with the mercury above freezing. The flare-back which gave Taft his big inaugural snowstorm is another example of the way a depression may deepen on approaching the coast. Until the upper atmosphere is as well understood and watched as the lower, or until instruments are perfected whereby the weather conditions can be made self-announcing such surprises are absolutely unavoidable. Under conditions that warrant any suspicion of sudden developments the Bureau at Washington is careful to order extra observations in the areas likely to be affected, but no surface observations can quite suffice.
Fifteen storms a year originate over the west Gulf States, or, drifting in from the Pacific over Arizona and New Mexico begin to acquire energy in Texas. Twelve are set up over the Colorado mountains. These usually dip down into Texas before starting their drive toward the northeast. After both these sets of storms get under way they strike resolutely for the same locality,—the St. Lawrence Valley. The conformation of the St. Lawrence region provides an irresistible attraction for American storms. Occasionally a very strong anticyclone holds that territory and pushes the cyclone off the coast at Hatteras or even makes them drift across the country to Florida. But such occasions are exceptional. Give the ordinary cyclone its head, and, ten to one, you will find it on the way to the St. Lawrence. The inhabitants will confirm this statement, I am sure. They do not feel discriminated against in the matter of weather. They get nearly everything that is going. Since they have to accommodate from seventy to eighty cyclones in fifty-two weeks they have very little time to brood over any one variety of weather. With the optimism of that section of the country they say, “If you don’t like our weather, wait a minute.”
Ten storms a year originate over the Rocky Mountain Plateau, north of Colorado. About twenty cross over from the Canadian Provinces of Alberta and British Columbia. And all our other storms, about forty each year, enter our country from the North Pacific by way of Washington and Oregon. Many of these drift across the northern tier of states without any great display of energy, at least before they reach the Lake region. But the majority loop down somewhat into the middle west as far south as Kansas, and then make their turn toward the inevitable St. Lawrence. They usually require four days to make the trip from coast to coast by this route, as also by the more direct northern route, because on that they travel more at leisure. But the storms from Texas, whose energy is greatest because of greater heat and moisture, occasionally speed from Oklahoma to New York in thirty-six hours.
In summer all speeds are reduced. This is because the disparities in temperature are less. In winter where greater extremes of temperature are brought into conjunction the processes of the storm are all more violent. And it is a bit disheartening to know that a storm is aggravated to even greater endeavors by its own exertions. Its energy provides the conditions to stimulate greater energy, and, like a fire, it increases as it goes. If it did not run out of the zone which nourished it and proceed into another zone where conditions were distinctly discouraging the limits of the storm would be much extended, and vast territories would be devastated by the self-propelling combination of wind and water.
To the generality of us the word storm means rain. To the scientist it means wind. In reality the cyclone is rare that crosses our country without causing rain somewhere along its track. The curiosity of the Weather Bureau to find out the paths of the storm centers is abundantly justified because it is along these paths that the heaviest rainfall and the severest winds occur. But whether or not there is precipitation on the path of the cyclone it is rated as a storm if there is a lowering of pressure and consequent wind-shift.
The storm centers are not always well-defined, and quite often the circulation of the wind about them is not complete. Such cyclones never amount to much, although there is always the possibility of their closing in and developing a complete circulation with the attendant increase of energy. The incomplete cyclones over the desert and plateau regions are lame affairs, lacking interest and advancing timidly if at all. But once let them drift into a locality where they can be supplied with moist air, they pick up energy, keep a definite course, and advance with increasing speed.
Very often the center will split up, the circulation perfecting itself around both centers of depression. One of these will likely be over Minnesota and the other over Texas and the organization will steam-roller the states to the east in the manner of a gigantic dumb-bell. This formation is more likely to have been caused by the two centers appearing simultaneously than by a split in an original center. The weather reports call this fashion of storm a trough of low pressure. The southern center is the one that develops the more energy on its turn to the northeast. If the two centers should unite on reaching the northeast a very heavy precipitation is the invariable result.
All cyclones have much greater length than breadth. They frequently stretch from unknown latitudes in Canada into unrecorded distances into the Gulf, while on the other hand it is a very large storm that rains simultaneously upon the Mississippi and the Atlantic. Behind a cyclone of pronounced energy a second whirl, called a secondary depression, often develops, in which case the period of wet weather is prolonged. Also, more rarely, an offshoot forms ahead of the main depression.
A sluggish, sulky cyclone either in winter or summer provides more opportunity to humanity for self-discipline than almost any other feature of our national environment. In winter when the depression slows up it settles down upon one community in the guise of fog, and stays by the locality until an anticyclone blows in and noses it out. Fog is aggravation, but a hot wave is suffering and the hot wave is caused by a depression weak in character but generous in dimensions getting held up on the northern half of our country. By its nature it attracts the air from all sides, and being in the north, the direction of the wind over most of the country would be southerly. Air from the west and north has a downward tendency, but south and east winds are surface currents. Consequently these winds, blowing over leagues of heated soil, become dry and parching. If the depression lingers long the entire country to the east, south, and west soon suffers from superheated air. At last the very intensity of the heat defeats itself and the reaction to cooler is effected dramatically through a thunderstorm.