Galaxies.—These consist of vast aggregations of stars which form separate ‘island universes’ floating in the depths of space; they are believed to equal in magnitude and magnificence the Milky Way—the galaxy to which our system belongs.

Nebulæ.—We now reach the last, and what are believed to be the most distant of the known contents of the heavens. They are all exceedingly remote, devoid of any perceptible motion, faintly luminous, and, with the exception of two of their number, invisible to the naked eye. Halley was the first astronomer who paid any attention to those objects. In 1716 he enumerated six of them, but of this number only two can, in a strict sense, be regarded as nebulæ, the others since then have been resolved into magnificent star clusters. In 1784, Messier catalogued 103 nebulæ, and the Herschels—father and son—in their survey of the stellar regions, discovered 4,000 of those objects. There are now 8,000 known nebulæ in the heavens, but the majority of them are not of much interest to astronomers. Prior to the invention of the spectroscope it was believed that all nebulæ were irresolvable star clusters, but the analysis of their light by this instrument indicated that their composition was not stellar but gaseous. Their spectra consist of a few bright lines revealing the presence of hydrogen, nitrogen, and other gaseous elements.

Much that is mysterious and uncertain is associated with those objects which appear to lie far beyond the limits of our sidereal system. It is now generally believed that they exhibit the earliest stage in the formation of stars and planets—inchoate worlds in process of slow evolution, which will eventually condense into systems of suns, and planetary worlds.

Nebulæ present every variety of form. Some are annular, elliptic, circular, and spiral; others are fan-shaped, cylindrical, and irregular, with tufted appendages, rays, and filaments. A fancied resemblance to different animated creatures has been observed in some. In Taurus there is a nebula called the ‘Crab’ on account of its likeness to the crustacean; another is called the ‘Owl Nebula’ from its resemblance to the face of that bird. The Orion Nebula suggests the opened jaws of a fish or sea monster, hence called the Fish-Mouth Nebula. There is a Horse-Shoe Nebula, a Dumb-Bell Nebula, and many others of various shapes and forms. They are classified as follows: (1) Annular Nebulæ, (2) Elliptic Nebulæ, (3) Spiral Nebulæ, (4) Planetary Nebulæ, (5) Nebulous Stars, (6) Large Irregular Nebulæ.

Annular Nebulæ.—These resemble in appearance an oval-shaped luminous ring; they are comparatively few in number, and not more than a dozen have been discovered in the whole heavens. The most remarkable object of this class is the Ring Nebula, which is situated between the stars β and γ Lyræ. It is visible in a moderate-sized telescope as a well-defined, flat, oval ring; its central part is not quite dark but is occupied by a filmy haze of luminous matter which is prolonged inwards from the margin of the ring. When examined with a high power the edges of the ring have a fringed appearance, and numerous glittering stellar points become visible both within and without its circumference. This nebulous ring, though a small object in the telescope, is of enormous magnitude, and if it were not more distant than 61 Cygni, one of the nearest of the fixed stars, its diameter would not be less than 20,000 millions of miles, but it has been estimated by Herschel that it is 900 times more remote than Sirius. How stupendous, then, must be its dimensions, and how bewildering to our conception is the profound immensity of space in which it is located! An annular nebula similar to that of Lyra, but on a smaller scale, is found in Cygnus, and within it there can be seen a conspicuous star. Another exists in Scorpio which contains two stars situated within the ring at diametrically opposite points to each other.

Elliptical Nebulæ.—The most interesting object of this class is the Great Nebula in Andromeda, called ‘the transcendentally beautiful queen of the nebulæ’—an appellation which it scarcely merits. This object, which is plainly visible to the naked eye, is of an oval shape, of a milky white colour, and is situated near the most northern star of the three which form the girdle of Andromeda. It was known to the ancients, and Ali Sufi, a Persian astronomer who flourished in the tenth century, alludes to it; but it did not attract much attention until the seventeenth century. Simon Marius was the first to observe this object with a telescope. This he did on December 15, 1612; he describes it as shining with a pale white light resembling in appearance the flame of a candle when seen through a semi-transparent piece of horn. When examined with a high magnifying power it is seen to occupy a largely extended area measuring 4° in length and 2½° in breadth. Its luminosity increases from the circumference to the centre, where there can be seen a small nucleus with an ill-defined boundary, which has the appearance of being granular, but its composition is not stellar. Two dark channels running almost parallel to each other and to the axis of the nebula have been observed by Bond; these, when prolonged, form into curves which terminate in two great rings. They are wide rifts which separate streams of nebulous matter, and are indicative that some formative processes may be going on within the nebula.

Astronomers have been baffled in their attempts to discover the nature of the Andromeda Nebula. Though great telescopes have been able to render visible thousands of stars over and around it, yet the nebula itself is irresolvable and bears no trace of stellar formation; neither, according to Dr. Huggins, is its spectrum gaseous, a circumstance which deepens the mystery associated with this object. Its distance is unknown, and its dimensions cannot be ascertained.

Other elliptical nebulæ are found in different regions of the heavens. In Ursa Major there is an oval nebula resembling that of Andromeda, but on a much smaller scale. It possesses a nucleus, and on the photographic plate there can be detected the presence of spiral structure, indicating the existence of streams of nebulous matter. Adjacent to this nebula is another of the same class with a double nucleus, and associated with it is a nebulous star.

Spiral Nebulæ.—The great reflector of Earl Rosse at Parsonstown was the successful means by which nebulæ of this form were discovered. This powerful telescope was capable of defining with greater accuracy the structural formation of those objects than any other instrument in use. It was ascertained that spiral coils and convoluted whorls enter into the structure of most nebulæ, indicating a similarity in the process of change which may be going on in these vast accumulations of cosmical matter. The most interesting specimen of a spiral nebula is situated in Canes Venatici. It consists of spiral coils emanating from a centre with a nucleus and surrounded by a narrow luminous ring. In appearance it resembles the coiled mainspring of a watch.

Planetary Nebulæ.—These have been so named on account of the resemblance which they bear to the discs of planets. They are of uniform brightness, circular in shape, with sharply-defined edges, and are frequently of a bluish colour. They are more numerous than annular nebulæ; three-fourths of their number are in the Southern Hemisphere, and they are situated in or very near the Milky Way. Those objects were first described by Sir William Herschel, who was rather perplexed as to what was their real nature and how he should classify them. He remarked that they could not be planets belonging to far-off suns, nor distant comets, nor distended stars. Consequently, he concluded rightly that they were nebulæ. When observed with large telescopes, they lose their planetary aspect, and their sharpness of outline is less apparent; their discs become broken up into bright and dark portions, and in some, numerous minute stars have been observed, whilst others have well-defined nuclei.