Charlestown’s machine shop in 1913. Overhead belts transferred power from a central steam engine to the machines. The potentially hazardous belts were later replaced with electric motors on each machine.
Lathe operator shapes steam turbine rotor for destroyer tender Whitney in 1923.
The major innovations were again in hull material and propulsion. The transition from iron to steel hulls further liberated naval engineers. Lighter, stronger, and less brittle, steel allowed them more play in hull size and proportions. Despite extensive use of ironclads by the United States during the Civil War, its navy essentially skipped the iron stage in seagoing warships, moving from Hartford-type wooden steamers to the steel ABCD ships of 1883. While the Charlestown yard launched no steel warships until the 1930s, it did construct the tug Pentucket (1903) and training bark Cumberland (1904), both steel-hulled.
As steam engines grew more efficient in the 1880s and ’90s, sailing rigs were made smaller and vestigial masts served mainly as radio antennae and platforms for directing big guns. But a revolution in steam technology sent reciprocating engines the way of masts on most large naval vessels. Steam turbines, which were much more efficient at sustained high speeds, were developed in the 1880s in Europe and used in 1905 on Dreadnought. In America they became truly practical during the World War I period.
Along with the introduction of turbines came an innovation in the fuel that powered them. During the 1890s oil was introduced, used in combination with coal. By 1910 the United States had built its first all oil-burning warship. Besides providing greater power more quickly, oil needed less storage space and fewer engine room hands than coal.
These advances and refinements completed the evolution of the U.S. Navy warship from wooden-hulled sailing vessel to powered steel ship. But perfecting the new technology was not the only challenge associated with the transition. The demands of modern naval design provoked growing controversy over how work should be performed at naval shipyards and how those yards should be organized. Charlestown Navy Yard played a central role in the debate.
Since 1868 the nation’s naval shipyards had each been organized into departments corresponding to those at the Navy Department level. Each department head, though nominally under the yard commandant, really worked for his boss in Washington. So each department became in effect a separate plant protecting its own interests and budget. When a yard built relatively simple wooden-hulled ships powered by steam engines, the tasks of the Construction and Steam Engineering departments differed enough that there was little overlap. The old organization was not then a problem. But as warships became complex, integrated machines the system broke down, providing little coordination between departments and a great deal of duplication. By 1910 it was grossly wasteful and inefficient, a public scandal.
At about the same time as reformers were calling for a shakeup of naval shipyards, the phrase “scientific management” was being bandied about. Everyone recognized that the 19th-century industrial system, while highly successful, had to be managed differently to best incorporate 20th-century technology. The most famous of the new management systems was that of Frederick Winslow Taylor. Taylor’s system called for the strict application of scientific methods to industrial management and organization in order to produce the maximum output. Specifically, efficiency experts would study workers’ tasks and break them down into their smallest components; perform time-and-motion studies to eliminate wasteful motions and determine the optimum time in which a task should be completed; and offer wage incentives and penalties for meeting or falling short of the new standards. There would be no reason for bargaining or for unions since non-debatable scientific principles, rather than human foibles and emotions, would govern management decisions.
The workers’ response to Taylorism was speedy and unequivocal. They fiercely resisted any system that would analyze their movements as if they were machines to be fine-tuned (not an exaggeration of Taylor’s stated beliefs). Such a system, they said, would demean them and their skills—robbing them of their autonomy and individuality; eliminating craft from the job; turning workers into mere cogs performing sped-up, repetitious tasks “to the physical breaking point”—not to mention the threat to collective bargaining. So visceral was their reaction to Taylorism that any kind of management system became suspect.