In the few cases where the hens are as conspicuously colored as the cocks, and yet the nest is open to view, we generally find that the hens are strong, pugnacious birds, and well able to defend themselves. There are even instances, though these are comparatively rare, in which the hens are more brilliantly colored than the cocks; and it is an interesting fact that it is then the cocks, and not the hens, which hatch the eggs.
It therefore seems to be a rule, with very few exceptions, that when both the cocks and hens are of strikingly gay or conspicuous colors, the nest is such as to conceal the sitting bird; while, whenever there is a striking contrast of colors, the nest is open and the sitting bird exposed to view.
Again, most fishes are dark above and pale below. This points to the same fact, for when one looks down into the dark water, the dark color of their backs renders them the less easy to distinguish; while, to an enemy looking up from below, the pale belly would be less conspicuous against the light of the sky. Those fishes which live deep down in the depths of the ocean present no such contrast between the upper and under surface. Many of the smaller animals which live in the sea are as transparent as glass, and are consequently very difficult to distinguish.
It is sometimes said that if animals were really colored with reference to concealment, sheep would be green, like grass. This, however, is quite a mistake. If they were green they would really be more easy to see. In the gray of the morning and the evening twilight, just the time when wild animals generally feed, gray and stone colors are most difficult to distinguish. Sheep were originally mountain animals, and every one who has ever been on a mountain-side knows how difficult it is to distinguish a sheep, at some distance, from a mass of stone or rock.
It is, again, a great advantage to the rabbit and hare to be colored like earth; black or white rabbits are more easy to see, and consequently more likely to be killed. This, however, does not apply to those which are kept in captivity, and we know that tame rabbits are often black and white. Again, in the far north, where for months together the ground is covered with snow, the white color, which would be a danger here, becomes an advantage; and many Arctic animals, like the polar bear and polar hare, are white, while others, such as the mountain hare and ptarmigan, change their color, being brown in summer and white in winter. So are the Arctic fox and the ermine, to whom it is then an advantage to be white, not to avoid danger, but in order that they may be the more easily able to steal unperceived upon their prey.
Many of the cases in which certain insects escape danger by their similarity to plants are well known; the leaf insect and the walking-stick insect are familiar and most remarkable cases. The larvæ of insects afford, also, many interesting examples, and in other respects teach us, indeed, many instructive lessons. It would be a great mistake to regard them as merely preparatory stages in the development of the perfect insect. They are much more than this, for external circumstances act on the larvæ, as well as on the perfect insect: both, therefore, are liable to adaptation. In fact, the modifications which insect larvæ undergo may be divided into two kinds—developmental, or those which tend to approximation to the mature form; and adaptational or adaptive, those which tend to suit them to their own mode of life.
It is a remarkable fact, that the forms of larvæ do not depend on those of the mature insect. In many cases, for instance, very similar larvæ produce extremely dissimilar insects. In other cases, similar, or comparatively similar, perfect insects have very dissimilar larvæ. Indeed, a classification of insects founded on larva would be quite different from that founded on the perfect insects. The group to which the bees, wasps, and ants belong, for instance, and which, so far as the perfect insects are concerned, form a very natural division, would be divided into two; or rather one portion of them—namely, the saw-flies—would be united to the butterflies and moths. Now, why do the larvæ of saw-flies differ from those of their allies, and resemble those of butterflies and moths? It is because their habits differ from those of ants and bees, and they feed on leaves like ordinary caterpillars.
In some cases the form changes considerably during the larval state. From this point of view, the transformations of a small beetle, called Sitaris, which have been carefully observed by M. Fabre, are peculiarly interesting.
The genus Sitaris, which is allied to the blister-fly and to the oil-beetle, is parasitic on a kind of solitary bee which excavates subterranean galleries, each leading to a cell. The eggs of the beetle, which are deposited at the entrance of the galleries made by the bees, are hatched at the end of September or beginning of October, and we might not unnaturally expect that the young larvæ, which are active little creatures with six serviceable legs, would at once eat their way into the cells of the bee. No such thing: till the month of April following they remain without leaving their birthplace, and consequently without food; nor do they in this long time change either in form or size. M. Fabre ascertained this, not only by examining the burrow of the bees, but also by direct observations of some young larvæ kept in captivity. In April, however, his captives at last awoke from their long lethargy, and hurried anxiously about their prisons. Naturally inferring that they were in search of food, M. Fabre supposed that this would consist either of the larvæ or pupæ of the bee, or of the honey with which it stores its cell. All three were tried without success. The first two were neglected; and the larvæ, when placed on the latter, either hurried away or perished in the attempt, being evidently unable to deal with the sticky substance. M. Fabre was in despair. The first ray of light came to him from our countryman Newport, who ascertained that a small parasite found on one of the wild bees was, in fact, the larva of the oil-beetle. The larvæ of Sitaris much resembled this larva. Acting on this hint, M. Fabre examined many specimens of the bee, and found on them at last the larvæ of his Sitaris. The males of the bee emerge from the pupæ sooner than the females, and M. Fabre ascertained that, as they come out of their galleries, the little Sitaris larvæ fasten upon them. Not, however, for long: instinct teaches them that they are not yet in the straight path of development; and, watching their opportunity, they pass from the male to the female bee. Guided by these indications, M. Fabre examined several cells of the bee; in some, the egg of the bee floated by itself on the surface of the honey; in others, on the egg, as on a raft, sat the still more minute larva of the Sitaris. The mystery was solved. At the moment when the egg is laid, the Sitaris larva springs upon it. Even while the poor mother is carefully fastening up her cell, her mortal enemy is beginning to devour her offspring; for the egg of the bee serves not only as a raft, but as a repast. The honey, which is enough for either, would be too little for both; and the Sitaris, therefore, at its first meal, relieves itself from its only rival. After eight days the egg is consumed, and on the empty shell the Sitaris undergoes its first transformation, and makes its appearance in a very different form.
The honey, which was fatal before, is now necessary—the activity, which before was necessary, is now useless; consequently, with the change of skin, the active, slim larva changes into a white fleshy grub, so organized as to float on the surface of the honey, with the mouth beneath and the breathing-holes above the surface; for insects breathe, not as we do through the mouth, but through a row of holes arranged along the side. In this state it remains until the honey is consumed; then the animal contracts, and detaches itself from its skin, within which the further transformations take place. In the next stage the larva has a solid corneous envelope and an oval shape, and, in its color, consistency, and immobility, resembles the chrysalis of a fly. The time passed in this condition varies much. When it has elapsed, the animal moults again, again changes its form; after this, it becomes a pupa, without any remarkable peculiarities. Finally, after these wonderful changes and adventures, in the month of August the perfect beetle makes its appearance.