“Glacial erosion has cut almost vertically down through the beds carving immense amphitheatres with basin bottoms containing numerous Alpine lakes.... Post-glacial erosion has done an absolutely trivial work. There is not a particle of direct evidence, so far as I can see, to warrant the belief that these U-shaped canons were given their peculiar form by other means than the actual ploughing erosion of glaciers....”
These contributions from the Cordilleras corroborating the conclusions of Ramsay (1862), Tyndall (1862), Jukes (1862), Hector (1863), Logan (1863), Close (1870), and James Geikie (1875), made little impression. The views of Lyell (1833), Ball (1863), J. W. Dawson (1864), Falconer (1864), Studer (1864), Murchison (1864, 1870), Ruskin (1865), Rutimeyer (1869), Whymper (1871), Bonney (1873), Pfaff (1874), Gurlt (1874), Judd (1876), prevailed, and the conclusions of Davis in 1882[[76]] fairly expressed the prevailing belief in Europe and in America:
“The amount of glacial erosion in the central districts has been very considerable, but not greatly in excess of pre-glacial soils and old talus and alluvial deposits. Most of the solid rock that was carried away came from ledges rather than from valleys; and glaciers had in general a smoothing rather than a roughening effect. In the outer areas on which the ice advanced it only rubbed down the projecting points; here it acted more frequently as a depositing than as an eroding agent.”
During the past quarter-century the cleavage in the ranks of geologists, brought about by Ramsay’s classic paper, has remained. Fairchild and others in America, Heim, Bonney, and Garwood in Europe argue for insignificant erosion by glaciers; and Gannet, Davis, Gilbert, Tarr in America followed by Austrian workers present evidence for erosion on a gigantic scale. A perusal of the voluminous literature in the Journal and elsewhere shows that the difference of opinion is in part one of terms, the amount of erosion rather than the fact of erosion; it also arises from failure to differentiate the work of mountain glaciers and continental ice sheets, of Pleistocene glaciers and their present diminished representatives. The irrelevant contribution of physicists has also made for confusion.
It is interesting to note that the criteria for erosion of valleys by glaciers has long been established and by workers in different countries. Ramsay (1862) in England outlined the problem and presented generalized evidence. Hector (1863) in New Zealand pointed out the significance of discordant drainage, the “hanging valleys” of Gilbert. The U-form, the broad lake-dotted floor, and the presence of cirques and the process of plucking were probably first described by LeConte (1873) in America. The truncation of valley spurs by glaciers pointed out by Studer in the Kerguelen Islands (1878) was used by Chamberlin (1883) as evidence of glacial scouring.
Conclusion.
During the past century many principles of land sculpture have emerged from the fog of intellectual speculation and unorganized observation and taken their place among generally accepted truths. Many of them are no longer subjects of controversy. Erosion has found its place as a major geologic agent and has given a new conception of natural scenery. Lofty mountains are no longer “ancient as the sun,” they are youthful features in process of dissection; valleys and canyons are the work of streams and glaciers; fiords are erosion forms; waterfalls and lakes are features in process of elimination; many plains and plateaus owe their form and position to long-continued denudation. Modern landscapes are no longer viewed as original features or the product of a single agent acting at a particular time, but as ephemeral forms which owe their present appearance to their age and the particular forces at work upon them as well as to their original structure.
It is interesting to note the halting steps leading to the present viewpoint, to find that decades elapsed between the formulation of a theory or the recording of significant facts and their final acceptance or rejection, and to realize that the organization of principles and observations into a science of physiography has been the work of the present generation. Progress has been conditioned by a number of factors besides the intellectual ability of individual workers.
The influence of locality is plainly seen. Convincing evidence of river erosion was obtained in central France, the Pacific Islands, and the Colorado Plateau—regions in which other causes were easily eliminated. Sculpture by glaciers passed beyond the theoretical stage when the simple forms of the Sierras and New Zealand Alps were described. The origin of loess was first discerned in a region where glacial phenomena did not obscure the vision. The complexity of the Glacial period asserted by geologists of the Middle West was denied by eastern students. The work of waves on the English coast impressed British geologists to such an extent that plains of denudation and inland valleys were ascribed to ocean work.
In the establishment of principles, the friendly interchange of ideas has yielded large returns. Many of the fundamental conceptions of earth sculpture have come from groups of men so situated as to facilitate criticism. It is impossible, even if desirable, to award individual credit to Venetz, Charpentier, and Agassiz in the formulation of the glacial theory; and the close association of Agassiz and Dana in New England and of Chamberlin and Irving in Wisconsin was undoubtedly helpful in establishing the theory of continental glaciation. From the intimate companionship in field and laboratory of Hutton, Playfair and Hope, arose the profound influence of the Edinburgh school, and the sympathetic cooperation of Powell, Gilbert, and Dutton has given to the world its classics in the genetic study of land forms.