I have sketched above, in a very hurried manner, the main outline of a system of house-drainage which may be accepted or which may be recommended by a physician with confidence of securing a good result. To go more into detail in technical matters would be out of place in a paper of this character. Before leaving this subject, however, it is important to call attention to the fact that what is recognized in our houses as sewer gas is in far greater degree the product of decomposition taking place within the house-drains themselves than the product of decomposition in the distant sewer forced into the house through its connecting drain. It is emphatically a case of the beam in our own eye as compared with the mote in the eye of our neighbor. It is a rule which has exceptions, but they are few, that the contained air of the house-pipes is far worse than the contained air of the sewer; and the conviction is growing that the use of a trap to the main drain between the house and the public sewer is more often objectionable than advantageous. Such a trap always tends to check the flow of the drain and to induce deposits whose decomposition is objectionable. Wherever the abandonment of the trap is anything like universal the considerable ventilation of the sewer thereby secured brings its atmosphere to a condition which makes it not objectionable, and generally useful, as a source of movement in the air of the interior drain- and soil-pipe.

(a) Public sewers are more or less good or bad entirely according to their character and condition. As a rule, a well-flushed sewer which is used for no other purpose than the removal of foul waste, built on what is called the separate system, and automatically flushed at least daily, may be considered to be, if well laid and tightly jointed, absolutely safe. A public sewer of large size and of irregular construction, receiving not only household wastes, but the wash of streets as well, may be regarded at least as an object of grave suspicion. These general statements may be so far qualified by the character of the sewers of each class as to run very nearly together; that is to say, separate sewers, with leaky joints, irregular grades, defective alignment, insufficient flushing, and inadequate restriction as to the matters they are to receive, will be an intolerable and dangerous nuisance; on the other hand, a large brick sewer built in the best manner and of the best material, with sufficient fall and sufficient supply to maintain itself in a cleanly condition, is free from the serious drawbacks which usually attach to sewers of this class.

With sewerage as with house-drainage it is not worth while to attempt here to give anything like detailed directions for inspection and for reformation. It will suffice to call attention to this one broad and general rule: Every sewer or drain having for its object the removal of putrescible organic matters must be so arranged as to maintain itself in a condition of practically absolute cleanliness, without, as in the case of storm-water sewers, waiting for the flushing effect of storms, which often come only at long intervals, during which the worst condition of decomposition may be established. Whether the sewer be intended for drainage only or for both drainage- and storm-water, if it contains at any time deposits of any kind, it is defective—more or less so, of course, according to the extent and duration of the accumulation.

Although it should be rigidly insisted upon in every case that the sewer should maintain itself free from deposits, there will still be, unavoidably, a certain amount of foul gas produced by the decomposition of the matters coating its walls, and in order to dilute and to remove this, and perhaps in order to modify their original character, the most thorough ventilation is necessary.

Any sewer or other drain which at any time gives forth the odor of putrid decomposition is in bad condition and should be at once rendered inoffensive. So far as I know, there is no exception to this rule. I have met no conditions in towns of any size where absolute self-cleansing may not be secured. It is worth while, however, to repeat here the statement made above, that sewer gas, in so far as it is a serious factor in connection with the drainage of houses, is the product of the interior pipes of the house much more frequently than of the public sewer in the street.

(b) The disposal of liquid wastes by irrigation, so far as this method is applied to the outflow of public sewers, is not of especial interest here, but an important modification has been made of the system of irrigation which is of the greatest consequence in considering the sanitary improvement of isolated country-houses, of hospitals, prisons, etc., and of houses in towns about which there is a small amount of available land. The process which has been found best suited to the purpose is the invention of the Rev. Henry Moule, the inventor of the earth-closet. He found it a serious drawback to the dry-earth system that it was incapable of taking care of the liquid wastes of the house. He devised a method of conducting the liquid into very shallow drains made with open-jointed agricultural drain-tiles, so porous in their character as to allow the liquid carried by them to escape at the joints into the soil, and thus get the benefit of its purifying qualities without the unsightly and often offensive process of allowing the liquid to flow over the surface. The first use made of this system was about 1866. Since that time its use has extended very considerably both here and in England, and many improvements have been made in its details, so that it may now be accepted as entirely satisfactory.

The process in its best development, as applied to the drainage of single houses, may be thus described, many of the appliances used being the subject of patents: The outflow from the house is delivered into a settling-basin or grease-trap of sufficient size to still the flow, to cause solids to settle to the bottom, and grease and other light matters to float at the top. The outlet from this basin is through a pipe having its inlet at some distance below its overflow-point; that is, at the level of the comparatively clarified liquid, below the grease and above the sediment. The outflow passes into another vessel known as a flush-tank, where it accumulates until it reaches the summit of a self-acting siphon. This height being reached, any considerable addition to the flow sets the siphon in action, and the whole contents of the flush-tank are discharged with rapidity into the drain beyond. The discharge completed, air is automatically admitted to the siphon, and no further flow can take place until the flush-tank has again been filled. The drain, of iron or vitrified pipes tightly joined, is continued to the edge of the ground prepared for purification. It here delivers into a series of open-jointed agricultural tiles, laid with their bottoms not more than ten inches below the surface of the ground. The total length of these tile-drains is regulated according to the discharging capacity of the flush-tank, with a view to their becoming entirely filled at each discharge. Within a short time after the flow has ceased the liquid has all left the pipes and entered the soil, its impurities being retained and its filtered water settling away into the porous or artificially drained ground below. During the interval between the discharges of the flush-tank, a day or more, the process of purification (oxidation) of the retained impurities goes on in the soil, and its thorough aëration prepares it to purify the next discharge. This method of disposal is now employed in connection with hundreds of houses, and its use, which has in some cases continued for a dozen years, is constantly increasing. Its application implies a certain amount of fall, but this amount need not be great. The discharging height of the tank need not be more than twelve inches. The main outlet need not fall more rapidly than at the rate of 1 to 300, and the absorption-drains ought not to fall more rapidly than at the rate of 1 to 600. If the tank can be built on the top of the ground, an average surface fall of 1 to 400 can usually be made to meet all the requirements. Where waste matters are to be removed from cellars and basements below the level of the ground, a greater fall is necessary, or the wastes which are there collected must be thrown to the tank by pumping or otherwise.

Where there is a bit of grass-land a little removed from the house (and from sight), it answers a perfectly satisfactory purpose to dispense with the absorption-drains and to deliver the main outlet directly on to the surface of the ground. The effect in both cases is entirely different from what it would be were the flow of the drains not regulated by the use of the flush-tank. The moment we have a constant slight discharge, either on the surface of the ground or into the absorption-drains, we establish a condition of constant saturation which leads to the over-fouling of a small area, which is rarely if ever purified by aëration. For an intermittent discharge some form of flush-tank is an absolute necessity. It is often found in practice, where the flow from the house is considerable, that the discharge of the house-drains into the settling-basin produces such an agitation of its contents as to set in motion and to carry into the flush-tank bits of paper partly macerated, grease, etc. This has been met by a recent improvement, which consists in building a transverse wall in the settling-basin, which checks the current from the house-drain and causes the flow from the house side of the wall to pass over its top in a thin small current which does not materially agitate the contents of that part of the basin from which the outflow pipe is fed.

(c) The cesspool is still the chief reliance of the world at large. There is nothing to be said in its favor save what may be based on the old adage that "what is out of sight is out of mind." There is everything to be said in its condemnation, whether we regard its contents as a great mass of putrefying and infecting filth, as the source of oozings which travel through crevices of rocks, through layers of gravel, through seams in clay, or through lighter soils into and under cellars and into drinking-water wells and defectively constructed cisterns, or as an ever-active gas-retort supplying the pipes of the house with the foulest products of putrefaction. It is in all respects and under all circumstances a curse, unless placed far away from the possibility of tainting the air we breathe or the soil over which we live, or from which we or others take our drinking-water, and even then it had better be abandoned.

The simple drainage of the soil involves a question of the greatest importance. If the ground under the house or about it is at any time, unless perhaps immediately after heavy rains, saturated with moisture, we have to apprehend a condition of insalubrity more or less serious in proportion to the degree of saturation and the degree of foulness with which this is associated. The drainage requirements of land outside of the house are less easily determined, but it requires nothing more than a casual examination of the cellar in ordinarily wet weather to determine whether or not an improvement of its soil-water drainage is necessary. If it is at such times wet, or even persistently damp, thorough drainage is demanded; and it is only necessary to say that this should be secured by some process which can under no circumstances bring the air of the cellar into communication with the air of a sewer or foul drain.