To appreciate the conditions under which pathological accumulations of fluid, whether effusions or exudations, may arise, it is desirable to bear in mind the essential conditions which prevail in the occurrence of transudation, since the former are likewise chiefly derived from the blood and are transuded through the walls of its vessels. These conditions are largely dependent upon the laws governing the diffusion of substances through an animal membrane, the vascular wall representing the filter. As a living membrane its relation is dependent upon vital as well as physical conditions, and the former produce certain important modifications in the physical process of filtration.

The transudation through the vessels takes place chiefly through those with the thinnest walls, the capillaries, although it is probable that a certain degree of transudation may also occur through the walls of the smallest veins. The causes which are instrumental in promoting the circulation of the blood—viz. the contraction and dilatation of the heart, the contraction of the arteries, the inspiratory action of the thorax, and muscular movements throughout the body—are also essential in producing the flow of lymph; and the existence of pressure upon the hæmic side of the filter is the first feature of importance in occasioning the transudation. The constant removal of the transudation from the outer side results from the pressure being less in this position.

At the same time, an increase in the quantity of blood in the vessels is not necessarily productive of any considerable increase in the fluid transuded. Cohnheim calls attention to the experiments of Worm Müller, which show that a plethoric condition may readily be produced by the injection of quantities of blood into the circulation of animals, the amount of which cannot exceed twice the volume of the animal's blood without producing death. Although a temporary increase of the blood-pressure results, a return to the normal quickly follows. This is permitted by the propulsion of the excess of blood into the capillaries and veins, which become consequently distended, especially those of the abdominal organs. There is no increased transudation corresponding with the quantity of fluid introduced, nor is there any considerable distension of the blood-vessels of the skin, subcutaneous or intermuscular connective tissue. Such experiments show no permanent increase in the blood-pressure within the large veins if there is no obstruction to the admission of venous blood into the heart, presumably owing to their capacity for considerable distension.

Although experiments show that a simple plethora with great distension of the capillaries of the abdominal organs occasions no considerable increase of transudation, a different result follows a hydræmic plethora25 induced by the injection of immense quantities of salt water into the blood-current—often six times as much liquid as the animal had blood. Here, too, the arterial blood-pressure shows no permanent increase, nor does that within the large veins become perceptibly increased till enormous quantities of fluid are injected. The blood flows through the vessels with increased rapidity in consequence of the diminished friction of the diluted blood, and an increased transudation begins at once. The various glands, salivary and gastro-intestinal, kidneys and liver, secrete more copiously, and the flow of a dilute lymph from the thoracic duct becomes greatly increased, while that from the cervical lymphatics becomes moderately accelerated. The lymph from the extremities, however, is no greater in quantity than that flowing from an animal in a perfectly normal condition. The localization of the increased transudation from the blood-vessels is further characterized by the abundant accumulation of watery fluid in all the abdominal organs and abdominal cavity, in the salivary glands and surrounding connective tissue, while elsewhere in the body the organs and tissues are almost invariably in the same condition with regard to moisture as are those of a healthy animal under normal circumstances.

25 Cohnheim and Lichtheim, Virchow's Archiv, 1877, lxix. 106.

The importance of these experiments with reference to the causes of the transudation of fluid from the blood is obvious. The pressure upon the walls of the blood-vessels cannot become sufficiently increased to be accompanied with augmented transudation until limits are reached which are beyond the possibilities of occurrence in the human body. When such limits are attained in animals, the increased pressure, however great it may be, does not suffice to produce a general transudation, but one limited to the vessels of those parts of the body whose normal function is connected with too abundant transudation of fluid. A simple hydræmic condition of brief duration has been proven, by experiment, insufficient to give rise to increased transudation, neither increased secretion nor increased flow of lymph taking place. The inference from these experiments is that an increased transudation is more dependent upon conditions of the filter than upon those of blood-pressure. The absence of any observable changes in the filter leads to the assumption of an increased permeability, of physiological occurrence in certain parts of the body, as the chief feature in the occurrence of increased transudations.

Dropsy arises when the transudation is accumulated. As dropsical accumulations are transudations from the blood, essentially blood-serum with a diminished percentage of albumen, and as such blood-serum is practically lymph from its presence in the lymph-vessels, dropsical effusions are to be regarded as stagnant lymph. Such stagnations may be present in the small lymph-spaces within the connective tissue, or in the larger lymph-sacs, as the peritoneal, pleural, pericardial, and scrotal cavities. In like manner, the stagnation may take place in the cavities of joints and in those of the brain and cord, although the latter represent functional rather than structural lymph-canals.

The term oedema is applied to the accumulation in the connective-tissue lymph-spaces in general, while the term anasarca is confined to those cases where the subcutaneous lymph-spaces are concerned. The accumulation in the great lymph-cavities is known as ascites when peritoneal, hydrothorax when pleural, hydropericardium when pericardial, hydrocele when in the cavity of the tunica vaginalis, hydrocephalus if within the ventricles of the brain, and hydromyelocele when within the central canal of the spinal cord.

The accumulation of dropsical effusions may be considered as possibly resulting from an obstruction to the channels through which the transudation should flow, or from insufficient force to overcome normal obstructions, or from an abnormally increased transudation.

Lymph-channels are frequently obstructed, but no appreciable diffused retention of lymph results unless the thoracic duct is obstructed. This rare affection is followed by enormous distension of the thoracic and abdominal portions of the parts beyond the stenosis. Ascites and hydrothorax may follow, but not necessarily any considerable oedema of the peripheral parts of the body. As a result of the distension of the thoracic duct, rupture is not unlikely to take place, and the effused fluid contains chyle.26