After speaking of the experiments, to which allusion was made (at Watson, A.D. 1745), Franklin writes: “... It is proposed to put an end to them for this season, somewhat humorously, in a party of pleasure, on the banks of the Schuylkill. Spirits at the same time are to be fired by a spark sent from side to side through the river without any other conductor than the water—an experiment which we some time since performed to the amazement of many. A turkey is to be killed for our dinner by the electrical shock, and roasted by the electrical jack, before a fire kindled by the electrified bottle, when the healths of all the famous electricians in England, Holland, France and Germany are to be drank in electrified bumpers under the discharge of guns from the electrical battery.”

It was toward the close of the year 1750 that Franklin entertained the practicability of a lightning conductor (see Winckler, A.D. 1733), and, for this, he says, he was indebted to an experiment made by his friend Mr. Thomas Hopkinson (vide Franklin’s “Complete Works,” London, 1806, Vol. I. p. 172). In his “Poor Richard’s Almanac” for 1753, he refers to the lightning rod as security for “habitations and other buildings from mischief by thunder and lightning.”

References.—J. B. Le Roy, “Lettera al Rozier,” etc., Milano, 1782; “Rec. de Mém. de l’Acad. des Sc.” for 1770 and 1773; Jour. de Phys., 1773, Vol. II; Memoirs of M. Beyer, Paris, 1806–1809, and Delaunay’s explanation of his theories at pp. 193–198 of his 1809 Manuel.

The many notable observations, experiments and discoveries of Franklin are nowhere more ably reviewed than by his great admirer Dr. Priestley, who devotes much space thereto in his justly celebrated work on electricity.

At p. 92 of his “New Experiments,” etc., London, 1774, Franklin alludes to the failure of many European electricians in firing gunpowder by the electric spark, and gives his own method by using a battery of four large glass jars, while at p. 423 of the London edition of his “Letters and Papers,” etc., Franklin relates curious observations which are worth mentioning here. He says that he sent a charge of electricity “through a small glass tube that had borne it well when empty, but when filled with water was shattered to pieces and driven all about the room. Finding no part of the water on the table, I suspected it to have been reduced to vapour. I was confirmed in that suspicion afterward when I had filled a like piece of tube with ink and laid it on a sheet of paper, whereon after the explosion I could find neither any moisture nor any sully from the ink. This experiment of the explosion of water, which I believe was first made by that most ingenious electrician, Father Beccaria, may account for what we sometimes see in a tree struck by lightning, when part of it is reduced to fine splinters like a broom; the sap vessels being so many tubes containing a watery fluid, which, when reduced to vapour, sends every tube lengthways. And, perhaps it is this rarefaction of the fluids in animal bodies killed by lightning or electricity, that by separating its fibres renders the flesh so tender and apt so much sooner to putrefy. I think, too, that much of the damage done by lightning to stone and brick walls may sometimes be owing to the explosion of water found during showers, running or lodging in the joints or small cavities or cracks that happen to be in the walls.”

References.—Majus—May—(Heinrich), “Disp. de fulmine” and “Disp. de tonitru,” Marp., 1673, as at Pogg., Annalen, Vol. II. p. 21; Giuseppe Saverio Poli, “La formazione del Tuono,” etc., 1772, and his other works on the same subject which appeared during the years 1773, 1779 and 1787; Phil. Trans. for 1751, Vol. XLVII. pp. 202, 289, 362; W. de Fonvielle, “Eclairs et Tonnerres”; “Terrestrial Magn.” for June 1903; Jour. of the Franklin Institute for 1836, Vol. XVII., p. 183; M. le Docteur Sestier, “De La Foudre”; “Lightning-Rod Conference,” Reports of Delegates, by G. J. Symons, 1882; Chap. III. s. 3, vol. i. of Van Swinden’s “Recueil,” etc., 1784; Lumière Electrique, Tome XL. No. 23, p. 497; Giovanni Cardan’s work, Lyons, 1663; “Library of Literary Criticism,” C. W. Moulton, Buffalo, 1901–1902, Vol. IV. pp. 79–106; “An Outline of the Sciences of Heat and Electricity,” by Thos. Thomson, London, 1830, pp. 347, 423, 432–433; “The Electrical Researches of the Hon. Henry Cavendish,” Cambridge, 1879, Nos. 350, note, 363; “Works of Benj. Franklin,” Jared Sparks, London, 1882; Phil. Trans., Vols. XLVII. p. 565; XLIX. pp. 300, 305,; L. p. 481; LI. p. 525; LII. 456; also Hutton’s abridgments, Vol. X. pp. 189, 212, 301, 629, 632; Vol. XI. pp. 189, 435, 609; “Bibliothèque Britannique,” Genève, 1796, Vol. LI. p. 393 (letter to M. Marc Auguste Pictet); Stuber, “Continuation of the Life of Dr. Franklin”; “An Essay on the Nature of Heat, Light and Electricity” (on the Franklinian hypothesis), by Chas. Carpenter Bompass, London, 1817, Chap. III. s. 3, p. 217; “List of Books written by or relating to Franklin,” by Paul L. Ford, 1889; L. Baldwin, “Mem. of Amer. Acad.,” O. S. I. part i. p. 257; Sturgeon’s “Researches,” p. 524; J. Bart. Beccari, “De Artif. elect ...”; likewise all the references that are given at pp. 26–27 of Ronalds’ “Catalogue”; “Journal des Savants” for June 1817, pp. 348–356.

A.D. 1752.—Dalibard (Thomas François), French botanist and amateur in physics, carries out very carefully the suggestions embodied in Franklin’s printed letters and constructs an atmospherical conductor at Marly-la-Ville, about eighteen miles from Paris, where Nollet likewise experimented. Dalibard’s apparatus consisted of a pointed iron rod, one inch in diameter and about forty feet long, which was protected from the rain by a sentry box and attached to three long wooden posts insulated by silken strings.

On the 10th of May, 1752, during Dalibard’s absence, an old soldier by the name of Coiffier, who was at the time employed as a carpenter and who had been left in charge, on observing the approach of a storm, hurried to the apparatus prepared to carry out the instructions previously given him. It was not long before he succeeded in obtaining large sparks on presenting a phial to the rod, and these sparks, which were all accompanied by a large snapping noise, were likewise obtained by the curate of Marly, M. Raulet, whom he had sent for and with whose aid Coiffier subsequently succeeded in charging an electric jar. On the 13th of May, Dalibard made, to the French Academy of Sciences, a report of the results thus obtained by Coiffier, to whom, it may be said, properly belongs the distinction of having been the first man who saw the electric spark drawn from the atmosphere.

On the 18th of the same month of May, M. de Lor, of the French University, drew similar sparks from a rod ninety-nine feet high at his house in the Estrapade, at Paris, and the same phenomenon was afterward exhibited to the French King. It is said that the conductor afforded sparks even when the cloud had moved at least six miles from the place of observation. Other experiments of a like nature were made a few days later by Buffon at Montbar, and, during the ensuing months of July and August, in the vicinity of London, by Canton, who, it is said, succeeded in drawing atmospheric electricity by means of a common fishing rod (Dissertation Fifth, Eighth “Britannica,” Vol. I).

An account of the Dalibard and de Lor experiments was transmitted by the Abbé Mazéas, on the 20th of May, to the Royal Society of London.