Father Beccaria, as he is sometimes called from having been a member of the religious order of the Pious Schools, proved at the time to be the most indefatigable follower of Franklin in the study of atmospheric electricity. He was the first who recorded the phenomena of thunderstorms, and his many observations thereon are detailed throughout Part I. period x. and s. 10 of Priestley’s great work on electricity. Beccaria says that all clouds, whether of thunder, rain, snow or hail, are formed by the electric fluid; that the electric matter is continually darting from the clouds in one place at the same time that it is discharged from the earth in another; and that the clouds serve as conductors to convey the electric fluid from those places of the earth which are overloaded with it to those which are exhausted of it. Having shown that the polarity of the magnetic needle is determined by the direction in which the electric current has passed through it, he suggests taking the polarity acquired by ferruginous bodies as a test for ascertaining the kind of electricity with which the thunder cloud is charged.

He also shows that the meteor called a falling star is an electrical appearance, explains the cause of the peculiar noise attending the electric spark, and states that the passage of electricity is not instantaneous through the best conductors. He found a spark to occupy at least half a second in passing through 500 feet of wire, and six and a half seconds through a hempen cord of the same length, although when the cord was dampened it passed through it in two or three seconds.

He was the first to show the electric spark while in its passage through water, and he observed that the water sank in the tubes whenever a spark passed from one to the other as the air was repelled by the electric fluid. He found the effect of the electric spark upon water greater than the effect of common fire on gunpowder, and says he does not doubt that, if a method could be found of managing them equally well, a cannon charged with water would be more effective (“dreadful”) than one charged with gunpowder.

He demonstrates that air, contiguous to an electrified body, gradually acquires the same electricity; that the electricity of the body is diminished by that of the air; that there is mutual repulsion between air and the electric fluid, and that the latter, in passing through any portion of air, creates a temporary vacuum.

The production of what he calls his new inventive phosphorus and the method he employs for revivifying metals, are described, respectively, at pp. 365 and 282 of his “Lettere dell’ elettricismo.”

References.—Beccaria, “Lettere,” etc., Bologna, 1758, pp. 146, etc., 193, 266, 268, 290, 310, 345; likewise his “Elettricismo Artificiale,” Turin, 1753, pp. 110, 114, 227; Phil. Trans. for 1760, Vol. LI. p. 514; 1762, p. 486; 1766, Vol. LVI. p. 105; 1767, Vol. LVII. p. 297; 1770, Vol. LX. p. 277; 1771, p. 212, also Hutton’s abridgments, Vol. XI. p. 435; Vol. XII, pp. 291, 445; Vol. XIII. p. 50; Wartmann, “Mém. sur les Etoiles filantes”; Humboldt, “Relation historique,” Tome I; Lardner, “Lectures,” Vol. I. pp. 429–444; Sturgeon’s Annals, Vol. VI. pp. 415–420, 425–431, and Vol. VIII. p. 180; Noad, “Manual,” London, 1859, p. 197; Louis Cotte, “Observation ...” Paris, 1769 and 1772; “Mém. de Paris” for the same years and Jour. de Phys. for 1783; Ant. Maria Vassalli-Eandi, “Notizia sopra la vita ... di Beccaria,” 1816; Carlo Barletti, “Nuove Sperienze ...” Milano, 1771; “Biog. Générale,” Vol. V. pp. 77–78; “The Electrical Researches of Hon. Henry Cavendish,” Cambridge, 1879, No. 136; Hale, “Franklin in France,” Boston, 1888, Part I. p. 447; Humboldt, “Cosmos,” London, 1859, Vol. I. pp. 113–136, 202, 337; Vol. V. pp. 217–219, for the observations of Beccaria, Rozier, Kepler, Benzenberg, Brandes, Bogulawski, Nicholson, Arago and others on atmospheric electricity, aerolites, etc. See likewise Beccaria’s letters to Jean Claude Fromond, the Italian physicist (1703–1795), relating his experiments tending to prove that electric motions do not occur in vacuo, also his letters to the Princess Giuseppina di Carignano on the electricity of the moon, as well as to Jean Baptiste Le Roy and to Jacopo Bartolommeo Beccari relative to experiments with his kite; “Scelta di Opuscoli,” of Amoretti, Campi, Fromond and Soave, Vols. XIX. XXI. XXXII.; “Opuscoli Scelti,” II. 378; III. 243, 284, 377; V. 19.

A.D. 1753.—Bazin (Gilles Augustin), French physician and naturalist, publishes, at Strasbourg, an illustrated treatise on Magnetic Currents (“Description des Courants Magnétiques,” etc.), which also contains his observations upon the magnet, and a supplement to which appears during the year 1754.

References.—“La Grande Encyclopédie,” Vol. V. p. 974; Michaud, “Biog. Univ.,” Vol. III. p. 353; Ninth “Britannica,” Vol. XV. p. 242.

A.D. 1753.—C. M., i. e. Charles Morrison and not Charles Marshall, of Greenock, Scotland, writes, from Renfrew, February 1, 1753, to the Scots’ Magazine, a letter entitled “An Expeditious Method of Conveying Intelligence,” wherein is first suggested a practical manner of transmitting messages by frictional electricity.

A full copy of this letter appears at pp. 7–9 of Robert Sabine’s “Electric Telegraph,” London, 1872, and at p. 9, 103, No. 570, of the Scientific American Supplement for December 4, 1886, the last-named also reproducing some correspondence establishing the identity of Charles Morrison which was found in the papers of Sir David Brewster.