A.D. 1808.—Pasley (Charles William), F.R.S., D.C.L., K.C.B., who was at the time aide-de-camp to Sir John Moore, became Major-General in 1841 and Lieutenant-General in 1851, gives at pp. 205, 292, Vol. XXIX, and at p. 339, Vol. XXXV of Tilloch’s Philosophical Magazine, a description of the original and improved methods of constructing his “polygrammatic telegraph.”
The apparatus, as first devised by him between the years 1804 and 1807, consists of four posts, each bearing a pair of pivoted arms, which latter can be placed at different angles to indicate all desired numerals and letters. After he had seen the French semaphore during 1809 he improved his telegraph, employing but one post, upon which were three pairs of pivoted arms representing hundreds, tens and units.
In 1823 Pasley (then a Lieutenant-Colonel, Royal Engineers) issued a pamphlet entitled “Description of the Universal Telegraph for Day and Night Signals,” wherein he announces the abandonment of the polygrammatic principle. For day service he employs an upright post with two movable arms attached to the top on a pivot. Each arm is capable of assuming seven different positions, besides the quiescent position called the stop, in which the arms are turned down and concealed by the post. To prevent signals being seen in reverse, another arm, called an indicator, is added to one side of the post. For night signals he places a central lamp at the top of the post, as well as a lamp at the end of each arm, and suspends a fourth lamp, as an indicator, upon a light crane projecting horizontally beyond the range of both movable arms. Motion to the arms was communicated by means of an endless chain passing over two pulleys. Up to this time the semaphores employed by the Admiralty had been constructed without provision being made for the display of night signals.
Pasley was the first to apply the heating power of the galvanic battery to a useful practical purpose. While engaged on the River Thames he was written to by Mr. Palmer (Alfred Smee, “Electro-Metallurgy,” p. 297), who advised him to employ the galvanic battery instead of the long fuse then in common use, and as soon as he was made acquainted with the method of operating he at once adopted it and applied it effectively, during the year 1839, to the removal of the sunken hull of the “Royal George,” at Spithead.
References.—Sturgeon’s “Scientific Researches,” Bury, 1850, p. 174; Knight’s “Mech. Dict.,” Vol. I. p. 784; also “Documents relatifs à l’emploi de l’Electricité,” etc., Paris, 1841, taken from the United Service Journal and the “Militaire Spectateur Hollandais.” Consult likewise, “Trans. of the Society ... Arts,” Vol. XXXIX, London, 1821, for Peter Barlow, XL. pp. 76–100, and for Lieut. Nicolas Harris Nicolas, XL. p. 104; also Vol. XLII, London, 1824, for Mr. A. Westcott, pp. 165–166. A patented telegraph by James Boaz is alluded to in Vol. XII. pp. 84–87 of the Phil. Magazine.
Following close upon Pasley’s original telegraphic contrivance were several other methods of conveying intelligence at a distance, introduced at this period, worthy of mention here.
The Chevalier A. N. Edelcrantz, Swedish savant, sent to the London Society of Arts a model of his apparatus, which is to be found minutely described in Vol. XXVI. pp. 20, 184–189, of the Transactions of that institution. A description of his earlier contrivances for the same purpose had already been published at Stockholm in the year 1796, and after being translated into French had been noticed in William Nicholson’s Journal of Natural Philosophy for 1803. The one he finally adopted in 1808 consisted of ten boards placed in three vertical ranks, the central one having four boards and the side ranks three boards each. By this arrangement 1024 signals could be clearly shown, and it was possible, by observing the order in which the boards were exhibited, to make as many as 4,037,912 changes. He subsequently advised attaching lamps to the boards for night service. His system of working the boards, though very complicated, could be controlled by only one person, while the English method required several men to hold the shutters during heavy weather. As it was, his method is said to have been in constant use for fully twelve years prior to 1808 on both sides of the Baltic, and to have likewise served to transmit signals between Sweden and England.
Mr. Henry Ward, who had observed the difficulty with which the telegraph was worked at Blandford, in Dorsetshire, contrived the apparatus described in Vol. XXVI. pp. 20, 207–209 of the London Journal of the Society of Arts. The grooved wheels which are fixed upon the axis of the shutters to receive the ropes by which they are turned have the grooved portion of the rim formed in two segments, which are so attached to the periphery of the wheels by steel springs that they fly off and remain a little distance off when there is no strain upon the ropes, although so soon as a rope is pulled its pressure forces the segments into close contact with the solid rim of the wheel. In the segments are two notches, which, when the shutters are in either of their required positions, engage with a fixed catch so soon as the strain on the ropes is relaxed, and thus hold the shutters steady without any aid from the attendant. The pulling of a rope by drawing the segments close to the wheel releases the catch, and consequently enables the attendant to return any shutter to its original position.
Lieutenant-Colonel John Macdonald, F.R.S., who was already favourably known by two Reports on the Diurnal Variation of the Magnetic Needle observed at Fort Marlborough, Sumatra, and at St. Helena (Philosophical Transactions for 1796, p. 340, and for 1798, p. 397, also “Eighth Encycl. Brit.,” Vol. XIV. p. 54), publishes (1808–1817) two treatises upon his “Terrestrial Telegraph,” accompanied by an extensive “Telegraphic Dictionary.” His contrivance consists of thirteen boards or shutters arranged, like those of Edelcrantz, into three vertical ranks representing hundreds, tens and units. Twelve of the boards are capable of producing 4095 distinct combinations, and the thirteenth or auxiliary board, which is mounted over the centre of the apparatus, doubles that number. A flag or vane is added to the hundred side to distinguish it in whatever direction it may be viewed, and a ball sliding upon the staff which supports it affords the means of again doubling the number, so that, on the whole, 16,380 distinct signals can be obtained. He subsequently adopted a modification of the contrivance introduced by Pasley in 1809, and also described a sort of a “Symbolic Telegraph,” in which symbols like those of Dr. Hooke, but representing numerals instead of alphabetical characters, were dropped into open spaces denoting hundreds, tens and units. He further suggested a useful flag telegraph for the navy and devised several schemes for night telegraphs both for land and sea, one of which latter consists of three sets of four lights each, with an additional or director light to each set, affording the same extensive powers as his large board or shutter telegraph (Phil. Mag., Vols. LVII. pp. 88–93, and LVIII. pp. 99–103).
Major Charles Le Hardy communicates in 1808 to the London Society of Arts, Vol. XXVI. pp. 20, 180–183, a novel contrivance consisting of a large framework with nine radiating bars, representing the numerals from 1 to 9, and four sets of other bars intersecting them so as to form four concentric polygons, which latter express units, tens, hundreds and thousands; thousands being shown by the innermost polygon. Attached to the centre of the apparatus are four slender arms, carrying four square boards, the lengths of these arms being such that the board of one may, during the revolution of the arm, traverse the polygon which represents thousands, that of another the polygon representing hundreds, etc. By the addition of two other boards at the upper corners, one of which denotes 10,000 and the other 20,000, or, when displayed together, 30,000, the total range of the telegraph is from 1 to 39,999 (Philosophical Magazine, Vol. XXXIII. p. 343).