Benthic flora and fauna can be reduced by the presence of ice in two ways: In shallow water ice can freeze to the bottom for much of the year and prevent the establishment of plant and animal populations; and when ice floes are pushed together, they form underwater ice keels that can scour the bottom when the ice moves. Both of these events not only act directly to decrease benthic populations but also disturb the sediment, making it less suitable for colonization. In areas with heavy ice scour, sessile benthic populations can be greatly reduced, although motile species may move into scoured areas during the ice-free period in summer. In addition to preventing the establishment of sessile benthic animal populations, ice scour also prevents the establishment of beds of kelp and eelgrass (Zostera marina), thus decreasing the diversity and productivity of arctic inshore waters. Both kelp and eelgrass beds are important feeding sites for birds in areas south of the region affected by ice scour.
Sea Ice Allows Terrestrial Predators Access to Breeding Sites
The formation of ice between the mainland and offshore islands allows the arctic fox (Alopex lagopus) and other predators access to the islands used by breeding birds. Foxes can become permanently established on islands that have food sources during the period when birds are absent from the island. Often, however, there is little to attract foxes to the islands other than breeding birds. Because moats form around many islands before the breeding birds arrive, foxes are primarily a problem when moat formation is incomplete or when the breakup of ice is late. Arctic foxes are found on the pack ice throughout the summer and thus can visit islands that are separated from the mainland by open water but are adjacent to the pack ice.
Advantages
Sea Ice Provides a Matrix and Substrate for an Ice-associated Plankton Bloom and an Associated Under-ice Fauna
The first detailed studies on the blooms of diatoms that occur in the lower levels of ice were done by Appollonio (1961). The importance of this bloom in the energy budgets of arctic and subarctic seas has only recently been realized (Alexander 1974; McRoy and Goering 1974). In areas where ice is present throughout the year, the plankton bloom supports a population of under-ice invertebrates. These populations have been little studied but apparently consist primarily of copepods and amphipods (Mohr and Geiger 1968). Feeding on the invertebrates associated with the ice are two species of fish, polar cod (Arctogadus glacialis) and arctic cod (Boreogadus saida). Andriashev (1968) used the term cryopelagic to describe such fish, which are found in the midwater zone but also are associated with ice during some part of their life cycle.
The underside of multi-year ice has numerous ridges and pockets that provide a heterogeneous environment for the under-ice fauna. This environment is protected from disturbance from currents and wave action by ice keels acting as barriers, which also provide shelter from predators in the same manner as a coral reef. The overall effect of the under-ice flora and fauna is to increase the diversity of surface waters in arctic seas by creating an inverted benthic biota.
Sea Ice Provides Hauling Out Space for Marine Mammals
The mammals that inhabit the ice in the Chukchi and Bering seas and their adaptations to the pack ice environment were discussed by Fay (1974). Many of these species frequently haul out on the ice, where they provide food in the form of feces, placentas, and carcasses.