Because of the rigor of carrying out their primary duties while at sea, only a very few North American and European oceanographers or fishery biologists have found time to interest themselves in seabirds and then, with a few notable individual exceptions, only as an off-duty pastime. The reason is not far to seek. It is far less important to examine the ecology of organisms at the next highest level of the food chain to the ones that are the primary concern than it is to examine the next lowest level (the food of the fishes or, in the case of phytoplankton, the physical and chemical environment in which the organisms grow best).

Seabirds are at the very top of the marine food chain, and they are not wholly aquatic in any case since they mainly travel through the air rather than the water and reproduce on land rather than in the sea. Only with the relatively recent recognition that seabirds contribute to the recycling of nutrients back into the ocean to an important degree, have seabirds gained a new scientific constituency.

At about the same time, governments have begun to recognize that seabirds are relatively easily examined indicators of the presence of unseen chemical pollutants in coastal seas, perhaps primarily for the very same reasons that they were previously so largely ignored; namely, that they are at the top of the food chains (and so accumulate the most-persistent and least-degradable pollutants) and that the on-land failures in their reproductive biology are readily visible.

During the last 10 years, it has become evident that yet another fundamental science is even more basic to the achievement of a balanced and in-depth understanding of the influence of the environment upon seabirds—the combined field of astrophysics, geophysics, and climatology. New developments in this field (when they are not published in Nature or Science) appear in journals that are less familiar to seabird ornithologists than those in which the fishery biologists and biological oceanographers publish their findings.

Unfortunately, important advances in understanding the dynamics and energy transport mechanisms of both the atmosphere and the water masses of the oceans are not being picked up by students of seabirds because of the natural lag in communication that occurs between disparate disciplines. Only in the last few years have oceanographers and climatologists been invited to address gatherings of ornithologists, and the modesty with which they have sometimes done so has limited the impact of their offerings.

At this symposium, it was left to a biologist with no pretentions in either physics or mathematics to demonstrate the need for seabird ornithologists to understand basic environmental processes well beyond their usual range of interests. I did so with a series of slides taken from this "other" literature, and I had intended to include in the published version of this paper an extensive bibliography, subdivided into category groupings, so that seabird ornithologists could make their own selection of the points in the spectrum at which they most needed information.

Unfortunately, limitations upon space in this volume, daily additions to the exploding literature, and my own inability to keep up with understanding this have forced me to omit any references and not to attempt to expound detailed specific physical mechanisms.

Thus unencumbered here, I shall briefly outline instead what I perceive to be some of the significance for seabird ornithology and conservation of the rapidly expanding understanding of the oceans, the air-sea interface, atmospheric dynamics, and influences upon the world's climate of extraterrestrial events.

Small-scale or Short-term Influences