2. Tie a piece of moistened bladder very firmly over one end of a similar glass cylinder, and place the open end on the plate of the pump. As soon as you begin to exhaust the air from the interior, the bladder, which was previously quite horizontal, will begin to bulge inwards, the concavity increasing as the exhaustion proceeds, until the bladder, no longer able to bear the weight of the superincumbent air, breaks with a loud report.

3. The elasticity of air, or indeed of any gaseous body, may be shown by introducing under the air-pump receiver a bladder containing a very small quantity of air, its mouth being closely tied. As you exhaust the air from the receiver, that portion contained in the bladder being no longer pressed upon by the atmosphere, will gradually expand, distending the bladder until it appears nearly full: on readmitting the air into the receiver, the bladder will at once shrink to its former dimensions.

A shrivelled apple placed under the same conditions will appear plump when the air is removed from the receiver, and resume its former appearance on the readmission of the air.

4. There is a very pretty apparatus made for the purpose of showing the pressure of the atmosphere, consisting of a hollow globe of brass, about three inches in diameter, divided into two equal parts, which fit very accurately together. It is furnished with two handles; one of them screwed into a hollow stem, communicating with the interior of the globe, and fitting on to the air-pump: the other is attached to a short stem on the opposite side of the globe. In the natural state the globe may easily be separated into its two hemispheres by one person pulling the handles, but after the air has been exhausted from the interior it requires two very strong men to separate the parts, and they will often fail to do so. By turning the stopcock, and readmitting the air into the interior of the globe, it will come asunder as easily as at first.

We are indebted to the weight of the atmosphere for the power we possess of raising water by the common pump; for the piston of the pump withdrawing the air from the interior of the pipe, which terminates in water, the pressure of the atmosphere forces the water up the pipe to supply the place of the air withdrawn. It was soon found, however, that when the column of water in the pipe was more than thirty feet high, the pump became useless, for the water refused to rise higher. Why? It was found that a column of water about thirty feet high exerted a pressure equal to the weight of the atmosphere, thus establishing an equilibrium between the water in the pipe and the atmospheric pressure.

This is the principle on which the barometer, or measurer of weight, as its name imports, is constructed. The metal Mercury is about thirteen and a half times heavier than water; consequently, if a column of water thirty feet high balances the pressure of the atmosphere, a column of mercury thirty inches high ought to do so also—and this is in fact the case. If you take a glass tube nearly three feet long, and closed at one end, and fill it with mercury; then, placing your finger on the open end, invert the tube into a basin or saucer containing some of the same metal; upon removing your finger (which must be done carefully, while the mouth of the tube is completely covered by the mercury,) it will be seen that the fluid will fall a few inches, leaving the upper part of the tube empty. Such a tube with a graduated scale attached is in truth a barometer, and as the weight of the atmosphere increases or decreases, so the mercury rises or falls in the tube. This instrument is of the greatest value to the seaman, for a sudden fall of the barometer will often give notice of an impending storm when all is fine and calm, and thus enable the mariner to make the preparations necessary to meet the danger.

It was discovered by an Italian philosopher named Torricelli, and from him the vacuum formed in the upper end of the tube above the surface of the mercury has been called the Torricellian vacuum. It is by far the most perfect vacuum that can be obtained, containing necessarily nothing but a minute quantity of the vapour of mercury.

EXPERIMENT.

Pass a little ether through the mercury in the tube, and as soon as it reaches the empty space it will boil violently, depressing the mercury, until the pressure of its own vapour is sufficient to prevent its ebullition. If you now cool the upper part of the tube, so as to condense the vapour, the pressure being thus removed, the ether will again begin to boil, and so alternately, as often as you please, in order to show this fact with effect, the bore of the tube should not be less than half an inch in diameter.