The French began by placing their 75s on trucks for rapid changes of position. All the armies saw the possible advantages to be gained from the use of trucks with artillery but none planned—nor have any since put into practice—the extensive use of trucks, caterpillar tractors and motor transportation for personnel, which the United States planned on her entrance into the war. It was planned to equip about one-third of the A. E. F. artillery regiments with complete motor equipment. This plan did not entirely materialize but after the armistice the 3rd Field Artillery Brigade of the 3rd Division was completely motorized and its practice marches in Germany were most successful and full of promise for the future. To date the motorization of all our mobile Field Artillery, with the exception of about fifty per cent of the light field guns, has been authorized.

Motor traction gives a better performance than animal. While the latter, especially with the light field guns, possesses great mobility, it is not a sustained nor a persistent mobility; it is more easily exhausted and requires longer to recuperate. These are points of vital importance from a military viewpoint.

In 1920 a self-propelling caterpillar mounted with a 75-mm gun, model 1916, was tested with a view to ascertaining the ability of the motor to function in water, i. e. fording streams, etc. The caterpillar successfully moved through ice water which completely submerged the carburetor.

Passenger cars for the transportation of personnel, four wheel drive trucks with caterpillar tractors for the transportation of the materiel, and the development of self-propelling mounts for the 75 and 155 rifles are the latest and the most important developments in field artillery materiel.

CHAPTER III
ELEMENTS OF GUN CONSTRUCTION AND DESIGN

“A gun is a machine by which the force of expanding gas is utilized for the purpose of propelling a projectile in a definite direction.” It is essentially a metal tube closed at one end, of sufficient strength to resist the pressure of the gases caused by the combustion of the powder charge in the confined space at the closed end of the tube behind the projectile. The rapid combustion of the powder, which produces a high temperature, gives rise to a pressure uniformly exerted in all directions within the confined space. The energy exerted is used in forcing the projectile from the tube.

TUBES

Due to the effort of the large amount of superheated gas generated, which tends to expand in all directions, tremendous rending stresses are set up in the tube. Formerly these stresses were met by a sheer mass of metal, but, as the size of the projectiles increased and the necessary pressure to give them muzzle velocity increased, the size of the guns increased beyond the practical limits of mobility. This was at first offset by forgings of refined alloyed steels, but even these failed to keep pace with the increasing pressure desired. The new condition was met by the introduction of the “built-up” and the “wire-wrapped” guns. The modern built-up gun is made by assembling one or more superimposed cylinders around a central tube. The superimposed cylinders, whose inside dimensions are slightly smaller than the outside dimensions of those on which they are to be assembled, are expanded by heat sufficiently to allow them to be assembled over the tube. The subsequent contraction on cooling causes each of them to exert a uniform pressure on the cylinder immediately underneath. This method of assembling is called “shrinkage.” This gives a compression to the inner tube and a slight tension to the outer one. The compression is so much additional strength to the tube because it must first be overcome before the powder gases can exert a tension on the inner tube fibers. The exact amount of the compression and tension for all parts of a gun at rest or resisting an explosion is a matter of mathematical calculation. The built-up construction has been used in practically all our present day types of field artillery.

THE WIRE-WRAPPED GUN.

Wire-wrapped guns consist of: