Elevation is accomplished by telescoping screws, by circular racks and pinions, and by worms and arcs. Telescoping screws are good for from 15 to 20 degrees in elevation only, as for greater angles they become rather too large and cumbersome. The elevating arc is attached on the top, on the bottom or on the side of the cradle and, if possible, at its center. When the latter is not possible, two arcs are generally used to prevent torsional strains developing. Top racks are exposed to fire, side circular racks or arcs interfere with the traverse, with the placing of the sights, and with the general handling of the carriage. The bottom of the cradle is perhaps the best location for the rack. As in the traversing mechanism, a train of bevelled gears transmits the power from the hand wheel to the elevating mechanism.
In both the traversing and elevating mechanism, strength, simplicity, power, accessibility, non-interference and absence of lost motion are the features sought. To secure these is one of the most difficult things in gun-carriage design; for, since the traversing and elevating are the last two elements considered, they must, therefore, be the ground for modification and the means of adapting the great main elements—namely, wheels, axle, trail, recoil mechanism and gun—into a unit.
RECOIL MECHANISM.
The recoil system of the gun carriage consists of a recoil brake, a counter recoil mechanism and a counter recoil brake. The function of each part is apparent from its name. Various systems of checking recoil on field guns have been used, among them may be mentioned; friction devices including brakes on the wheel, inclined planes, pneumatic and hydraulic brakes. All have either been superseded by the last named or are used in connection with hydraulic brakes. The power of the brake lies in the pressure produced in the cylinder through the resistance to motion offered by the liquid flowing through apertures. By varying the size of these apertures the braking effect may be controlled so as to fulfill the conditions demanded by the service. In designing the brake, the effect of the counter recoil system, angle of fire, length of recoil, friction and pressure within the cylinder must all be considered. In howitzers which are designed to be fired at high angles of elevation, the recoil must be shortened to prevent the breech striking the ground, a condition successfully met. Since the pressure due to recoil is ultimately led into the ground through the trail and spade, consideration must be given to the problem of the moment of inertia about the trailspade. The tendency to turn over backward about the spade as the center is offset by the amount of the weight of the carriage with respect to the same point. This raises the question as to how much pressure may be allowed to act to the rear; all of which must be considered in designing the carriage. The counter recoil systems in general use are two: spring or pneumatic. The former is illustrated in our 3” and 75-mm field guns, the latter by the French 75-mm gun and 155-mm howitzer. Their purpose, of course, is to return the gun “into battery” after it has recoiled on the carriage.
The recoil mechanism is a study in itself, of which there are two schools—the advocates of the spring and of the air recuperators. Great Britain, Germany and the United States have been the advocates of spring recuperation and France of air recuperation. Great Britain and the United States were of the spring school, undoubtedly, because of the lack of a satisfactory air recuperating system; which is rather strikingly proven by the fact that both countries have adopted air recuperation since they have procured or developed satisfactory types.
Both schools have grounds for their position, however. The spring school has in its favor simplicity of design and manufacture and ease of replacement, which can be done in the field. On the other hand, spring recoils have many breakages and greater weight combined with a high replacement of weakened springs, the life varying from 3000 to 8000 rounds.
The air school has in its favor a high order of efficiency—smoother action, general all around efficiency and less weight. But the air recuperator is difficult to manufacture, costly, and when damaged must go to the rear to be repaired; which, however, it seldom needs.
In mounting the spring recuperator, the most recent practice has separated the recoil mechanism from the springs in order to distribute the piston rod pull, thus preventing whip and allowing easy access to the various parts for replacement, refilling and repairs. In order to lower the center of gravity, the gun is slung under the recoil cylinder with the two spring recuperators below and on either side.
Air recuperators are invariably located below the gun for protection and because of their large size and shape, which adapt them for attaching the elevating mechanism.