Now when the eye moves it must move at this rate. If the eye is 56 cm. distant from the opening, as in the previous case, the 9 cm. of exposure are 9° 11' of eye-movement, and we saw above that 9° 11' in 110σ is a very slow rate of movement, according to the best measurements. Now it is impossible for the eye to move so slowly as 9° 11' in 275σ. If, however, the eye is brought nearer to the opening, it is clear that the 9 cm. of exposure become more than 9° 11' of eye-movement. Therefore the eye and the fixation-points are so placed that EA (Fig. 5) = 26 cm. and PP' = 18 cm. The total eye-movement is thus 38° 11', of which the nine-centimeter distance of exposure is 19° 38'. Now the eye is found to move very well through 19° 38' in 275σ, although, again, this is much more than a proportionate part of the total time (99.9σ) given by Dodge and Cline for a movement of the eye through 40°. The eye is in this case also moving slowly. As before, it is permissible to let the pendulum run down till it swings too slowly for the eye to move with it; since any lessened speed of the pendulum only makes the reddish-orange phase more prominent.
As in the experiment with the dumb-bell, we have also here three cases: the control, the case of the eye moving, and again a control.
Case 1. T swings with the pendulum. I is placed in the front groove, and the eye looks straight forward without moving. The pendulum falls from 9.5° at one side, and the illumination is so adjusted that the phase in which the band is reddish-orange, is unmistakably perceived before that in which it is straw-yellow. The appearance must be 3 followed by 5 (Fig. 8).
Case 2. T is fixed in the background, I on the pendulum, and the phenomena are observed with the eye moving.
Case 3. A repetition of case 1, to make sure that no different adaptation or fatigue condition of the eye has come in to modify the appearance of the two successive phases as at first seen.
The possible appearances to the moving eye are closely analogous to those in the dumb-bell experiment. If the eye moves too soon or too late, so that it is at rest during the exposure, the image is like T itself (Fig. 8) but somewhat fainter and localized midway between the points P and P'. If the eye moves reflexly at the rate of the pendulum, the image is of the shape i and shows the two phases (3 followed by 5). It is localized in the middle and appears to move across the nine-centimeter opening.
A difficulty is met here which was not found in the case of the dumb-bell. The eye is very liable to come to a full stop on one of the colored surfaces, and then to move quickly on again to the final fixation-point. And this happens contrary to the intention of the subject, and indeed usually without his knowledge. This stopping is undoubtedly a reflex process, in which the cerebellar mechanism which tends to hold the fixation on any bright object, asserts itself over the voluntary movement and arrests the eye on the not moving red or green surface as the exposure takes place. A comparable phenomenon was found sometimes in the experiment with the dumb-bell, where an eye-movement commenced as voluntary would end as a reflex following of the pendulum. In the present experiment, until the subject is well trained, the stopping of the eye must be watched by a second person who looks directly at the eye-ball of the subject during each movement. The appearances are very varied when the eye stops, but the typical one is shown in Fig. 8:1. The red strip AB is seldom longer and often shorter than in the figure. That part of it which is superposed on the green seldom shows the orange phase, being almost always of a pure straw-yellow. The localization of these images is variable. All observations made during movements in which the eye stops, are of course to be excluded.
If now the eye does not stop midway, and the image is not localized in the center, the appearance is like either 2, 4, or 5, and is localized over the final fixation-point. 2 is in all probability the case of the eye moving very much faster than the pendulum, so that if the movement is from left to right, the right-hand side of the image is the part first exposed (by the uncovering of the left-hand side of T), which is carried ahead by the too swift eye-movement and projected in perception on the right of the later portion. 3 is the case of the eye moving at very nearly but not quite the rate of the pendulum. The image which should appear 2 cm. wide (like the opening i) appears about 3 cm. wide. The middle band is regularly straw-yellow, extremely seldom reddish, and if we could be sure that the eye moves more slowly than the pendulum, so that the succession of the stimuli is even slower than in the control, and the red phase is surely given, this appearance (3) would be good evidence of anæsthesia during which the reddish-orange phase elapses. It is more likely, however, that the eye is moving faster than the pendulum, but whether or not so inconsiderably faster as still to let the disappearance of the reddish phase be significant of anæsthesia, is not certain until one shall have made some possible but tedious measurements of the apparent width of the after-image. Both here and in the following case the feeling of succession, noticeable between the two phases when the eye is at rest, has disappeared with the sensation of redness.
The cases in which 5 is seen are, however, indisputably significant. The image is apparently of just the height and width of i, and there is not the slightest trace of the reddish-orange phase. The image flashes out over the final fixation-point, green and straw-yellow, just as the end-circles of the dumb-bell appeared without their handle. The rate of succession of the stimuli, green—red—green, on the retina, is identical with that rate which showed the two phases to the resting eye: for the pendulum is here moving at the very same rate, and the eye is moving exactly with the pendulum, as is shown by the absence of any horizontal elongation of the image seen. The trained subject seldom sees any other images than 4 and 5, and these with about equal frequency, although either is often seen in ten or fifteen consecutive trials. As in the cases of the falsely localized images and of the handleless dumb-bell, movements of both eyes, as well as of the head but not the eyes, yield the same phenomena. It is interesting again to compare the appearance under reflex movement. If at any time during the experiments the eye is allowed to follow the pendulum reflexly, the image is at once and invariably seen to pass through its two phases as it swings past the nine-centimeter opening.
The frequent and unmistakable appearance of this band of straw-yellow on a non-elongated green field without the previous phase in which the band is reddish-orange, although this latter was unmistakable when the same stimulation was given to the eye at rest, is authenticated by eight subjects. This appearance, together with that of the handleless dumb-bell, is submitted as a demonstration that during voluntary movements of the eyes, and probably of the head as well, there is a moment in which stimulations are not transmitted from the retina to the cerebral cortex, that is, a moment of central anæsthesia. The reason for saying 'and probably of the head as well,' is that although the phenomena described are gotten equally well from movements of the head, yet it is not perfectly certain that when the head moves the eyes do not also move slightly within the head, even when the attempt is made to keep them fixed.