We know too that the anæsthesia depends on a mechanism central of the retina, for stimulations are received during movement but not transmitted to consciousness till afterward. This would be further shown if it should be found that movements of the head, no less than those of the eyes, condition the anæsthesia. As before said, it is not certain that the eyes do not move slightly in the head while the head moves. The movement of the eyes must then be very slight, and the anæsthesia correspondingly either brief or discontinuous. Whereas, the phenomena are the same when the head moves 90° as when the eyes move that amount. It seems probable, then, that voluntary movements of the head do equally condition the anæsthesia.

We have seen, too, that in reflex eye-or head-movements no anæsthesia is so far to be demonstrated. The closeness with which the eye follows the unexpected gyrations of a slowly waving rush-light, proves that the reflex movement is produced by a succession of brief impulses (probably from the cerebellum), each one of which carries the eye through only a very short distance. It is an interesting question, whether there is an instant of anæsthesia for each one of these involuntary innervations—an instant too brief to be revealed by the experimental conditions employed above. The seeming continuity of the sensation during reflex movement would of course not argue against such successive instants of anæsthesia, since no discontinuity of vision during voluntary movement is noticeable, although a relatively long moment of anæsthesia actually intervenes.

But decidedly the most interesting detail about the anæsthesia is that shown by the extreme liability of the eye to stop reflexly on the red or the green light, in the second experiment with the pendulum. Suppose the eye to be moving from P to P' (Fig. 5); the anæsthesia, although beginning later than the movement, is present when the eye reaches O, while it is between O and N, that is, during the anæsthetic moment, that the eye is reflexly caught and held by the light. This proves again that the anæsthesia is not retinal, but it proves very much more; namely, that the retinal stimulation is transmitted to those lower centers which mediate reflex movements, at the very instant during which it is cut off from the higher, conscious centers. The great frequency with which the eye would stop midway in its movements, both in the second pendulum-experiment and in the repetition of Dodge's perimeter-test, was very annoying at the time, and the observation cannot be questioned. The fact of the habitual reflex regulation of voluntary movements is otherwise undisputed. Exner[24] mentions a variety of similar instances. Also, with the moving dumb-bell, as has been mentioned, the eye having begun a voluntary sweep would often be caught by the moving image and carried on thereafter reflexly with the pendulum. These observations hang together, and prove a connection between the retina and the reflex centers even while that between the retina and the conscious centers is cut off.

But shall we suppose that the 'connection' between the retina and the conscious centers is cut off during the central anæsthesia? All that the facts prove is that the centers are at that time not conscious. It would be at present an unwarrantable assumption to make, that these centers are therefore disconnected from the retina, at the optic thalami, the superior quadrigeminal bodies, or wheresoever. On broad psychological grounds the action-theory of Münsterberg[25] has proposed the hypothesis that cerebral centers fail to mediate consciousness not merely when no stimulations are transmitted to them, but rather when the stimulations transmitted are not able to pass through and out. The stimulation arouses consciousness when it finds a ready discharge. And indeed, in this particular case, while we have no other grounds for supposing stimulations to the visual centers to be cut off, we do have other grounds for supposing that egress from these cells would be impeded.

The occipital centers which mediate sensations of color are of course most closely associated with those other centers (probably the parietal) which receive sensations from the eye-muscles and which, therefore, mediate sensations which furnish space and position to the sensations of mere color. Now it is these occipital centers, mediators of light-sensations merely, which the experiments have shown most specially to be anæsthetic. The discharge of such centers means particularly the passage of excitations on to the parietal localization-centers. There are doubtless other outlets, but these are the chief group. The movements, for instance, which activity of these cells produces, are first of all eye-movements, which have to be directly produced (according to our present psychophysical conceptions) by discharges from the centers of eye-muscle sensation. The principal direction of discharge, then, from the color-centers is toward the localization-centers.

Now the experiment with falsely and correctly localized after-images proves that before the anæsthesia all localization is with reference to the point of departure, while afterwards it is with reference to the final fixation-point. The transition is abrupt. During the anæsthesia, then, the mechanism of localization is suffering a readjustment. It is proved that during this interval of readjustment in the centers of eye-muscle sensation the way is closed to oncoming discharges from the color-centers; but it is certain that any such discharge, during this complicated process of readjustment, would take the localization-centres by surprise, as it were, and might conceivably result in untoward eye-movements highly prejudicial to the safety of the individual as a whole. The much more probable event is the following:

Although Schwarz suggests that the moment between seeing the false and seeing the correct after-image is the moment that consciousness is taken up with 'innervation-feelings' of the eye-movement, this is impossible, since the innervation-feelings (using the word in the only permissible sense of remembered muscle-sensations) must precede the movement, whereas even the first-seen, falsely localized streak is not generated till the movement commences. But we do have to suppose that during the visual anæsthesia, muscle-sensations of present movement are streaming to consciousness, to form the basis of the new post-motum localization. And these would have to go to those very centers mentioned above, the localization-centers or eye-muscle sensation centers. One may well suppose that these incoming currents so raise the tension of these centers that for the moment no discharge can take place thither from other parts of the brain, among which are the centers for color-sensations. The word 'tension' is of course a figure, but it expresses the familiar idea that centers which are in process of receiving peripheral stimulations, radiate that energy to other parts of the brain (according to the neural dispositions), and probably do not for the time being receive communications therefrom, since those other parts are now less strongly excited. It is, therefore, most probable that during the incoming of the eye-muscle sensations the centers for color are in fact not able to discharge through their usual channels toward the localization-centers, since the tension in that direction is too high. If, now, their other channels of discharge are too few or too little used to come into question, the action-theory would find in this a simple explanation of the visual anæsthesia.

The fact that the anæsthesia commences appreciably later than the movement so far favors this interpretation. For if the anæsthesia is conditioned by high tension in the localization-centers, due to incoming sensations from the eye-muscles, it could not possibly commence synchronously with the movement. For, first the sensory end-organs in the eye-muscles (or perhaps in the ligaments, surfaces of the eye-sockets, etc.) have their latent period; then the stimulation has to travel to the brain; and lastly it probably has to initiate there a summation-process equivalent to another latent period. These three processes would account very readily for what we may call the latent period of the anæsthesia, as observed in the experiments. It is true that this latent period was observed only in long eye-and head-movements, but the experiments were not delicate enough in this particular to bring out the finer points.

Finally, the conditioning of anæsthesia by movements of the head, if really proved, would rather corroborate this interpretation. For of course the position of the head on the shoulders is as important for localization of the retinal picture as the position of the eyes in the head, so that sensations of head-movements must be equally represented in the localization centers; and head movements would equally raise the tension on those centers against discharge-currents from the color-centers.

The conclusion from the foregoing experiments is that voluntary movements of the eyes condition a momentary, visual, central anæsthesia.