Further experimental evidence of hearing was gotten from some work done to test the influence of sounds upon motor reactions to visual stimuli. Frogs, like most other amphibians, reptiles and fishes, are attracted by any small moving object and usually attempt to seize it. They never, so far as I have noticed, feed upon motionless objects, but, on the other hand, will take almost anything which moves. Apparently the visual stimulus of movement excites a reflex. A very surprising thing to those who are unfamiliar with frog habits is the fear which small frogs have of large ones. Put some green frogs or small bull frogs into a tank with large bull frogs, and the little ones will at once show signs of extreme fear; they jump about in the most excited manner and try hard to escape. The cause of their fear soon appears, since it is usually only a few minutes until the little ones are swallowed by their wide-mouthed, cannibalistic fellows.

It is, moreover, well known that a bit of red flannel fastened to a hook attracts frogs and is an excellent method of capturing them. Red seems to be the color which they most readily notice.

This tendency of the frog to attempt to seize any moving object I made use of to test the value of sounds. By placing a frog in a glass aquarium which was surrounded by a screen, back of which I could work and through a small hole in which I was able to watch the animal without being noticed by it, and then moving a bit of red cardboard along one side of the aquarium, I could get the frog to jump at it repeatedly. In each attempt to get the moving object, the animal struck its head forcibly against the glass side of the aquarium. There was, therefore, reason to think that a few trials would lead to the inhibition of the reaction. Experiment discovered the fact that a hungry frog would usually jump at the card as many as twenty times in rapid succession.

In this reaction to a visual stimulus there appeared good material for testing audition. I therefore arranged a 500 S.V. tuning fork over the aquarium and compared the reactions of animals to the visual stimulus alone, with that to the visual stimulus when accompanied by an auditory stimulus. The tuning-fork sound was chosen because it seemed most likely to be significant to the frog. It is similar to the sounds made by the insects upon which frogs feed. For this reason one would expect that the sight of a moving object and the sound of a tuning-fork would tend to reënforce one another.

The experiments were begun with observations on the effects of moving objects on the respiration. In case of a normal rate of 54 respirations per minute sight of the red object caused an increase to 58. Then the same determination was made for the auditory stimulus. The tuning-fork usually caused an increase in rate. In a typical experiment it was from 65 per minute to 76. The observations prove conclusively that the 500 S.V. sound is heard. My attention was turned to the difference of the environment of the ear in its relation to hearing. Apparently frogs hear better when the tympanum is partially under water than when it is fully exposed to the air.

Having discovered by repeated trials about how vigorously and frequently a frog would react to the moving red card, I tried the effect of setting the fork in vibration a half minute before showing the card. It was at once evident that the sound put the frog on the alert, and, when the object came into view, it jumped at it more quickly and a greater number of times than when the visual stimulus was given without the auditory. This statement is based on the study of only two animals, since I was unable to get any other frogs that were in the laboratory at the time to take notice of the red cardboard. This was probably because of the season being winter. I venture to report the results simply because they were so definite as to point clearly to the phenomenon of the reënforcement of the visual-stimulus reaction by an auditory stimulus.

Concerning the influence of this combining of stimuli on the reaction time, I am only able to say that the reaction to the moving object occurred quicker in the presence of the auditory stimulus. When the red card was shown it was often several seconds before the frog would notice it and attempt to get it, but when the sound also was given the animal usually noticed and jumped toward the moving card almost immediately.

Unfortunately I have thus far been unable to get chronoscopic measurements of the reaction times in this reënforcement phenomenon. I hope later to be able to follow out the interesting suggestions of these few experiments in the study of reënforcement and inhibition as caused by simultaneously given stimuli.

A few observations made in connection with these experiments are of general interest. The frog, when it first sees a moving object, usually draws the nictitating membrane over the eye two or three times as if to clear the surface for clearer vision. Frequently this action is the only evidence available that the animal has noticed an object. This movement of the eye-lids I have noticed in other amphibians and in reptiles under similar conditions, and since it always occurs when the animals have need of the clearest possible vision, I think the above interpretation of the action is probably correct.

Secondly, the frog after getting a glimpse of an object orients itself by turning its head towards the object, and then waits for a favorable chance to spring. The aiming is accurate, and as previously stated the animal is persistent in its attempts to seize an object.