IX.

The one generalization that I have thus far drawn from the investigation—namely, that the optical illusions are not reversed in passing from the field of touch, and that we therefore have a safe warrant for the conclusion that sight and touch do function alike—has contained no implicit or expressed assertion as to the origin of our notion of space. I have now reached the point where I must venture an explanation of the illusion itself.

The favorite hypothesis for the explanation of the geometrical optical illusions is the movement theory. The most generally accepted explanation of the illusion with whose tactual counterpart this paper is concerned, is that given by Wundt.[15] Wundt's explanation rests on variation in eye movements. When the eye passes over broken distances, the movement is made more difficult by reason of the frequent stoppages. The fact that the space which is filled with only one point in the middle is underestimated, is explained by Wundt on the theory that the eye has here the tendency to fix on the middle point and to estimate the distance by taking in the whole space at once without moving from this middle point. A different explanation for this illusion is offered by Helmholtz.[16] He makes use of the æsthetic factor of contrasts. Wundt insists that the fact that this illusion is still present when there are no actual eye movements does not demonstrate that the illusion is not to be referred to a motor origin. He says, "If a phenomenon is perceived with the moving eye only, the influence of movement on it is undoubtedly true. But an inference cannot be drawn in the opposite direction, that movement is without influence on the phenomenon that persists when there is no movement."[17]

Satisfactorily as the movement hypothesis explains this and other optical illusions, it yet falls short of furnishing an entirely adequate explanation. It seems to me certain that several causes exist to produce this illusion, and also the illusion that is often associated with it, the well-known Müller-Lyer illusion. But in what degree each is present has not yet been determined by any of the quantitative studies in this particular illusion. I made a number of tests of the optical illusion, with these results: that the illusion is strongest when the attention is fixed at about the middle of the open space, that there is scarcely any illusion left when the attention is fixed on the middle of the filled space. It is stronger when the outer end-point of the open space is fixated than when the outer end of the filled space is fixated. For the moving eye, I find the illusion to be much stronger when the eye passes over the filled space first, and then over the open space, than when the process is reversed.

Now, the movement hypothesis does not, it seems to me, sufficiently explain all the fluctuations in the illusion. My experiments with the tactual illusion justify the belief that the movement theory is even less adequate to explain all of the variations there, unless the movement hypothesis is given a wider and richer interpretation than is ordinarily given to it. In the explanation of the tactual illusion which I have here been studying two other important factors must be taken into consideration. These I shall call, for the sake of convenience, the æsthetic factor and the time factor. These factors should not, however, be regarded as independent of the factor of movement. That term should be made wide enough to include these within its meaning. The importance of the time factor in the illusion for passive touch I have already briefly mentioned. I have also, in several places in the course of my experiments, called attention to the importance of the æsthetic element in our space judgments. I wish now to consider these two factors more in detail.

The foregoing discussion has pointed to the view that the space-perceiving and the localizing functions of the skin have a deep-lying common origin in the motor sensations. My experiments show that, even in the highly differentiated form in which we find them in their ordinary functioning, they plainly reveal their common origin. A formula, then, for expressing the judgments of distance by means of the resting skin might be put in this way. Let P and P' represent any two points on the skin, and let L and L' represent the local signs of these points, and M and M' the muscle sensations which give rise to these local signs. Then M-M' will represent the distance between P and P', whether that distance be judged directly in terms of the localizing function of the skin or in terms of its space-perceiving function. This would be the formula for a normal judgment. In an illusory judgment, the temporal and æsthetic factors enter as disturbing elements. Now, the point which I insist on here is that the judgments of the extent of the voluntary movements, represented in the formula by M and M', do not depend alone on the sensations from the moving parts or other sensations of objective origin, as Dresslar would say, nor alone on the intention or impulse or innervation as Loeb and others claim, but on the sum of all the sensory elements that enter, both those of external and those of internal origin. And, furthermore, these sensations of external origin are important in judgments of space, only in so far as they are referred to sensations of internal origin. Delabarre says, "Movements are judged equal when their sensory elements are judged equal. These sensory elements need not all have their source in the moving parts. All sensations which are added from other parts of the body and which are not recognized as coming from these distant sources, are mingled with the elements from the moving member, and influence the judgment."[18] The importance of these sensations of inner origin was shown in many of the experiments in sections VI. to VIII. In the instance where the finger-tip was drawn over an open and a filled space, in the filled half the sensations were largely of external origin, while in the open half they were of internal origin. The result was that the spaces filled with sensations of internal origin were always overestimated.

The failure to recognize the importance of these inwardly initiated sensations is the chief defect in Dresslar's reasoning. He has endeavored to make our judgments in the illusion in question depend entirely on the sensations of external origin. He insists also that the illusion varies according to the variations in quantity of these external sensations. Now my experiments have shown, I think, very clearly that it is not the numerical or quantitative extent of the objective sensations which disturbs the judgment of distance, but the sensation of inner origin which we set over against these outer sensations. The piece of plush, because of the disagreeable sensations which it gives, is judged shorter than the space filled with closely crowded tacks. Dresslar seems to have overlooked entirely the fact that the feelings and emotions can be sources of illusions in the amount of movement, and hence in our judgments of space. The importance of this element has been pointed out by Münsterberg[19] in his studies of movement.

Dresslar says again, "The explanations heretofore given, wholly based on the differences in the time the eye uses in passing over the two spaces, must stop short of the real truth." My experiments, however, as I have already indicated, go to prove quite the contrary. In short, I do not think we have any means of distinguishing our tactual judgments of time from our similar judgments of space. When the subject is asked to measure off equal spaces, he certainly uses time as means, because when he is asked to measure off equal times he registers precisely the same illusion that he makes in his judgments of spatial distances. The fact that objectively equal times were used by Dresslar in his experiments is no reason for supposing that the subject also regarded these times as equal. What I have here asserted of active touch is true also of the resting skin. When a stylus is drawn over the skin, the subject's answer to the question, How long is the distance? is subject to precisely the same illusion as his answer to the question, How long is the time?

I can by a simple illustration show more plainly what I mean by the statement that the blending of the inner and outer sensations is necessary for the perception of space. I shall use the sense of sight for the illustration, although precisely the same reasoning would apply to the sense of touch. Suppose that I sat in an entirely passive position and gazed at a spot on an otherwise blank piece of paper before me. I am perfectly passive so far as motion on my part is concerned. I may be engaged in any manner of speculation or be in the midst of the so-called active attention to the spot; but I must be and for the present remain motionless. Now, while I am in this condition of passivity, suppose the spot be made to move slowly to one side by some force external to myself. I am immovable all the while, and yet am conscious of this movement of the spot from the first position, which I call A, to the new position, A', where it stops. The sensation which I now have is qualitatively different from the sensation which I had from the spot in its original position. My world of experience thus far has been a purely qualitative one. I might go on to eternity having experiences of the same kind, and never dream of space, or geometry, nor should I have the unique experience of a geometrical illusion, either optical or tactual. Now suppose I set up the bodily movements of the eyes or the head, or of the whole body, which are necessary to follow the path of that point, until I overtake it and once more restore the quality of the original sensation. This circle, completed by the two processes of external activity and restoration by internal activity, forms a group of sensations which constitutes the ultimate atom in our spatial experience. I have my first spatial experience when I have the thrill of satisfaction that comes from overtaking again, by means of my own inner activity, a sensation that has escaped me through an activity not my own. A being incapable of motion, in a world of flux, would not have the spatial experience that we have. A being incapable of motion could not make the distinction between an outer change that can be corrected by an internal change, and an outer change that cannot so be restored. Such an external change incapable of restoration by internal activity we should have if the spot on the paper changed by a chemical process from black to red.

Now such a space theory is plainly not to be confused with the theory that makes the reversibility of the spatial series its primary property. It is evident that we can have a series of sensations which may be reversed and yet not give the notion of space. But we should always have space-perception if one half of the circular process above described comes from an outer activity, and the other half from an inner activity. This way of describing the reversibility of the spatial series makes it less possible to urge against it the objections that Stumpf[20] has formulated against Bain's genetic space-theory. Stumpf's famous criticism applies not only to Bain, but also to the other English empiricists and to Wundt. Bain says: "When with the hand we grasp something moving and move with it, we have a sensation of one unchanged contact and pressure, and the sensation is imbedded in a movement. This is one experience. When we move the hand over a fixed surface, we have with the feelings of movement a succession of feelings of touch; if the surface is a variable one, the sensations are constantly changing, so that we can be under no mistake as to our passing through a series of tactual impressions. This is another experience, and differs from the first not in the sense of power, but in the tactile accompaniment. The difference, however, is of vital importance. In the one case, we have an object moving and measuring time and continuous, in the other case we have coëxistence in space. The coëxistence is still further made apparent by our reversing the movement, and thereby meeting the tactile series in the inverse order. Moreover, the serial order is unchanged by the rapidity of our movements."[21]