Evidently, in all these cases, the effect of a difference between two stimulations was to introduce certain changes in sensation during the interval which they limited, owing to the fact that the subject expected the difference to occur. Thus in the third group of experiments there were, very likely, in all cases changes from sensations of high tension to sensations of lower, or vice versa. It is probable that, in the experiments of the second group, there were also changes in muscular sensations, partly those of eye muscles, partly of chest and arm muscles, introduced by the change of attention from one point to another. At any rate, it is certain that there were certain sensation changes produced during the intervals by changes of locality.

If, then, we assume that the introduction of additional sensation change into an interval lengthens it, we are led to the conclusion that psychological time (as distinguished from metaphysical, mathematical, or transcendental time) is perceived simply as the quantum of change in the sensation content. That this is a true conclusion is seemingly supported by the fact that when we wish to make our estimate correspond as closely as possible with external measurements, we exclude from the content, to the best of our ability, the general complex of external sensations, which vary with extreme irregularity; and confine the attention to the more uniformly varying bodily sensations. We perhaps go even further, and inhibit certain bodily sensations, corresponding to activity of the more peripherally located muscles, that the attention may be confined to certain others. But attention to a dermal stimulation is precisely the condition which would tend to some extent to prevent this inhibition. For this reason we might well expect to find the error in estimation more variable, the 'constant error' in general greater, and the specific effects of variations which would affect the peripheral muscles, more marked in 'tactual' time than in either 'auditory' or 'optical' time. Certainly all these factors appear surprisingly large in these experiments.

It is not possible to ascertain to how great an extent subject Sh inhibited the more external sensations, but certainly if he succeeded to an unusual degree in so doing, that fact would explain the absence of effect of stimulation difference in his case.

Explanation has still to be offered for the variable effect of intensity difference upon the second interval. According to all subjects except Sn, there is a radical difference in attitude in the two intervals. In the first interval the subject is merely observant, but in the second he is more or less reproductive. That is, he measures off a length which seems equal to the standard, and if the stimulation does not come at that point he is prepared to judge the interval as 'longer,' even before the third stimulation is given. In cases, then, where the judgment with equal intensities would be 'longer,' we might expect that the actual strengthening or weakening of the final tap would make no difference, and that it would make very little difference in other cases. But even here the expectation of the intensity is an important factor in determining tension changes, although naturally much less so than in the first interval. So we should still expect the lengthening of the second interval.

We must remember, however, that, as we noticed in discussing the experiments of Group 2, there is complicated with the lengthening effect of a change the bare constant error, which appears even when the three stimulations are similar in all respects except temporal location. Compare WWW with SSS, and we find that with all five subjects the constant error is decidedly changed, being even reversed in direction with three of the subjects.

Now, what determines the direction of the constant error, where there is no pause between the intervals? Three subjects reported that at times there seemed to be a slight loss of time after the second stimulation, owing to the readjustment called for by the change of attitude referred to above, so that the second interval was begun, not really at the second stimulation, but a certain period after it. This fact, if we assume it to be such, and also assume that it is present to a certain degree in all observations of this kind, explains the apparent overestimation of the first interval. Opposed to the factor of loss of time there is the factor of perspective, by which an interval, or part of an interval, seems less in quantity as it recedes into the past. The joint effect of these two factors determines the constant error in any case where no pause is introduced between ST and CT. It is then perfectly obvious that, as the perspective factor is decreased by diminishing the intervals compared, the constant error must receive positive increments, i.e., become algebraically greater; which corresponds exactly with the results obtained by Vierordt, Kollert, Estel, and Glass, that under ordinary conditions long standard intervals are comparatively underestimated, and short ones overestimated.

On the other hand, if with a given interval we vary the loss of time, we also vary the constant error. We have seen that a change in the intensity of the stimulations, although the relative intensity of the three remains constant, produces this variation of the constant error; and the individual differences of subjects with regard to sensibility, power of attention and inhibition, and preferences for certain intensities, lead us to the conclusion that for certain subjects certain intensities of stimulation make the transition from the receptive attitude to the reproductive easiest, and, therefore, most rapid.

Now finally, as regards the apparent failure of the change in SSW to lengthen the second interval, for which we are seeking to account; the comparatively great loss of time occurring where the change of attitude would naturally be most difficult (that is, where it is complicated with a change of attention from a strong stimulation to the higher key of a weak stimulation) is sufficient to explain why with most subjects the lengthening effect upon the second interval is more than neutralized. The individual differences mentioned in the preceding paragraph as affecting the relation of the two factors determining the constant error, enter here of course to modify the judgments and cause disagreement among the results for different subjects.

Briefly stated, the most important points upon which this discussion hinges are thus the following: We have shown—

1. That the introduction of either a local difference or a difference of intensity in the tactual stimulations limiting an interval has, in general, the effect of causing the interval to appear longer than it otherwise would appear.