| Two were called | less, | 14 | per cent. |
| " | equal, | 36 | " |
| " | greater, | 50 | " |
I then increased the distance of the two cards to 15 mm., the other conditions remaining the same, and found that:
| Two were called | less, | 11 | per cent. |
| " | equal, | 50 | " |
| " | greater, | 39 | " |
It will be noticed that the ratio in this last series is not materially different from the ratio found when the two knobs of the æsthesiometer were compared with one knob. The ratio found when the distance was 10 mm., however, is somewhat different. At that distance two were called greater half of the time, while at 15 mm. two were called equal to one half of the time. The explanation of the difference, I think, is found in the comments of one of my subjects. I did not ask them to tell in what way one object was larger than the other—whether longer or larger all around or what—but simply to answer 'equal,' 'greater,' or 'less.' One subject, however, frequently added more to his answers. He would often say 'larger crosswise' or 'larger lengthwise' of his hand. And a good deal of the time he reported two larger than one, not in the direction in which it really was larger, but the other way. It seems to me that when the two cards were only 10 mm. apart the effect was somewhat as it would be if a solid object 4 mm. wide and 10 mm. long had been placed on the hand. Such an object would be recognized as having greater mass than a line 4 mm. long. But when the distance is 15 mm. the impression is less like that of a solid body but still not ordinarily like two objects.
In connection with the subject of diffusion the Vexirfehler is of interest. An attempt was made to develop the Vexirfehler with the æsthesiometer. Various methods were tried, but the following was most successful. I would tell the subject that I was going to use the æsthesiometer and ask him to close his eyes and answer simply 'one' or 'two.' He would naturally expect that he would be given part of the time one, and part of the time two. I carefully avoided any suggestion other than that which could be given by the æsthesiometer itself. I would begin on the back of the hand near the wrist with the points as near the threshold as they could be and still be felt as two. At each successive putting down of the instrument I would bring the points a little nearer together and a little lower down on the hand. By the time a dozen or more stimulations had been given I would be working down near the knuckles, and the points would be right together. From that on I would use only one point. It might be necessary to repeat this a few times before the illusion would persist. A great deal seems to depend on the skill of the operator. It would be noticed that the first impression was of two points, and that each stimulation was so nearly like the one immediately preceding that no difference could be noticed. The subject has been led to call a thing two which ordinarily he would call one, and apparently he loses the distinction between the sensation of one and the sensation of two. After going through the procedure just mentioned I put one knob of the æsthesiometer down one hundred times in succession, and one subject (Mr. Meakin) called it two seventy-seven times and called it one twenty-three times. Four of the times that he called it one he expressed doubt about his answer and said it might be two, but as he was not certain he called it one. Another subject (Mr. George) called it two sixty-two times and one thirty-eight times. A third subject (Dr. Hylan) called it two seventy-seven times and one twenty-three times. At the end of the series he was told what had been done and he said that most of his sensations of two were perfectly distinct and he believed that he was more likely to call what seemed somewhat like two one, than to call what seemed somewhat like one two. With the fourth subject (Mr. Dunlap) I was unable to do what I had done with the others. I could get him to call one two for four or five times, but the idea of two would not persist through a series of any length. He would call it two when two points very close together were used. I could bring the knobs within two or three millimeters of each other and he would report two, but when only one point was used he would find out after a very few stimulations were given that it was only one. After I had given up the attempt I told him what I had been trying to do and he gave what seems to me a very satisfactory explanation of his own case. He says the early sensations keep coming up in his mind, and when he feels like calling a sensation two he remembers how the first sensation felt and sees that this one is not like that, and hence he calls it one. I pass now to a brief discussion of what these experiments suggest.
It has long been known that two points near together on the skin are often perceived as one. It has been held that in order to be felt as two they must be far enough apart to have a spatial character, and hence the distance necessary for two points to be perceived has been called the 'space-threshold.' This threshold is usually determined either by the method of minimal changes or by the method of right and wrong cases.
If, in determining a threshold by the method of minimal changes—on the back of the hand, for example, we assume that we can begin the ascending series and find that two are perceived as one always until the distance of twenty millimeters is reached, and that in the descending series two are perceived as two until the distance of ten millimeters is reached, we might then say that the threshold is somewhere between ten and twenty millimeters. But if the results were always the same and always as simple as this, still we could not say that there is any probability in regard to the answer which would be received if two contacts 12, 15, or 18 millimeters apart were given by themselves. All we should know is that if they form part of an ascending series the answer will be 'one,' if part of a descending series 'two.'
The method of right and wrong cases is also subject to serious objections. There is no lower limit, for no matter how close together two points are they are often called two. If there is any upper limit at all, it is so great that it is entirely useless. It might be argued that by this method a distance could be found at which a given percentage of answers would be correct. This is quite true, but of what value is it? It enables one to obtain what one arbitrarily calls a threshold, but it can go no further than that. When the experiment changes the conditions change. The space may remain the same, but it is only one of the elements which assist in forming the judgment, and its importance is very much overestimated when it is made the basis for determining the threshold.
Different observers have found that subjects sometimes describe a sensation as 'more than one, but less than two.' I had a subject who habitually described this feeling as 'one and a half.' This does not mean that he has one and a half sensations. That is obviously impossible. It must mean that the sensation seems just as much like two as it does like one, and he therefore describes it as half way between. If we could discover any law governing this feeling of half-way-between-ness, that might well indicate the threshold. But such feelings are not common. Sensations which seem between one and two usually call forth the answer 'doubtful,' and have a negative rather than a positive character. This negative character cannot be due to the stimulus; it must be due to the fluctuating attitudes of the subject. However, if the doubtful cases could be classed with the 'more than one but less than two' cases and a law be found governing them, we might have a threshold mark. But such a law has not been formulated, and if it had been an analysis of the 'doubtful' cases would invalidate it. For, since we cannot have half of a sensation or half of a place as we might have half of an area, the subject regards each stimulation as produced by one or by two points as the case may be. Occasionally he is stimulated in such a way that he can regard the object as two or as one with equal ease. In order to describe this feeling he is likely to use one or the other of the methods just mentioned.
We might say that when the sum of conditions is such that the subject perceives two points, the points are above the threshold, and when the subject perceives one point when two are given they are below the threshold. This might answer the purpose very well if it were not for the Vexirfehler. According to this definition, when the Vexirfehler appears we should have to say that one point is above the threshold for twoness, which is a queer contradiction, to say the least. It follows that all of the elaborate and painstaking experiments to determine a threshold are useless. That is, the threshold determinations do not lead us beyond the determinations themselves.