It may reasonably be objected that there should be here no bands at all, since the same considerations would give an increasingly red band from B' to A', whereas by hypothesis the disc rotates so fast as to give an entirely uniform color. It is true that when the characteristic effect is A' A entire, the fusion-color is so well established as to assimilate a fresh stimulus of either of the component colors, without itself being modified. But on the area from 1 to 16 the case is different, for here the fusion-color is less well established, a part of the essential colored units having been replaced by black, the color of the rod; and black is no stimulation. So that the same increment of component color, before ineffective, is now able to modify the enfeebled fusion-color.

Observation confirms this interpretation, in that band y-1 is not red, but merely the fusion-color slightly darkened by an increment of black. Furthermore, if the rod is broad and slow in motion, but white instead of black, no bands can be seen overlying the rod. For here the small successive increments which would otherwise produce the bands 1-2, 2-3, etc., have no effect on the remainder of the fusion-color plus the relatively intense increment of white.

It may be said here that the bands 1-2, 2-3, etc., are less intense than the bands x-9, 9-10, etc., because there the recent or weighted unit-effects are black, while here they are the respective colors. Also the bands grow dimmer from x-9 to 15-16, that is, as they become older, for the small increment of one color which would give band 15-16 is almost wholly overridden by the larger and fresher mass of stimulation which makes for mere fusion. This last is true of the bands always, whatever the rate or width of the rod.

10. In general, equal sectors give equal bands, but if one sector is considerably more intense than the other, the bands of the brighter color will, for a broad and swiftly-moving rod, be the broader. The brighter sector, though equal in width to the other, contributes more toward determining the fusion-color; and this fact is represented by an intrusion of the stronger color into the transition-bands, at the expense of the weaker. For in these, even the decreased amount of the stronger color, on the side next a strong-color band, is yet more potent than the increased amount of the feebler color. In order to observe this fact one must have the rod broad, so as to give a broad transition-band on which the encroachment of the stronger color may be evident. The process is the same with a narrow rod and narrow transition-bands, but, being more limited in extent, it is less easily observed. The rod must also move rapidly, for otherwise the bands overlap and become obscure, as will be seen in the next paragraph.

11. If the disc consists of a broad and narrow sector, and if the rod is broad and moves at first rapidly but more slowly with each new stroke, there are seen at first broad, faint bands of the minority-color, and narrow bands of the majority-color. The former grow continuously more intense as the rod moves more slowly, and grow narrower in width down to zero; whereupon the other bands seem to overlap, the overlapped part being doubly deep in color, while the non-overlapped part has come to be more nearly the color of the minor sector. The overlapped portion grows in width. As the rate of the rod now further decreases, a confused state ensues which cannot be described. When, finally, the rod is moving very slowly, the phenomena described above in paragraph 9 occur.

The successive changes in appearance as the rod moves more and more slowly, are due to the factors previously mentioned, and to one other which follows necessarily from the given conditions but has not yet been considered. This is the last new principle in the illusion which we shall have to take up. Just as the transition-bands are regions where two pure-color bands overlap, so, when the rod is broad and moves slowly, other overlappings occur to produce more complicated arrangements.

These can be more compactly shown by diagram than by words. Fig. 10, a, b and c (Plate VI.), show successively slower speeds of the rod, while all the other factors are the same. In practice the tendency is to perceive the transition-bands as parts of the broad faint band of the minor color, which lies between them. It can be seen, then, how the narrow major-color bands grow only slightly wider (Fig. 10, a, b) until they overlap (c); how the broad minor-color bands grow very narrow and more intense in color, there being always more of the major color deducted (in b they are reduced exactly to zero, z, z, z). In c the major-color bands overlap (o, o, o) to give a narrow but doubly intense major-color band since, although with one major, two minor locus-bands are deducted. The other bands also overlap to give complicated combinations between the o-bands. These mixed bands will be, in part at least, minor-color bands (q, q, q), since, although a minor locus-band is here deducted, yet nearly two major locus-bands are also taken, leaving the minor color to predominate. This corresponds with the observation above, that, ' ... the non-overlapped part has come to be more nearly the color of the minor sector.'

A slightly slower speed of the rod would give an irreducible confusion of bands, since the order in which they overlap becomes very complicated. Finally, when the rod comes to move very slowly, as in Fig. 9, the appearance suffers no further change, except for a gradual narrowing of all the bands, up to the moment when the rod comes to rest.

It is clear that this last principle adduced, of the multiple overlapping of bands when the rod is broad and moves slowly, can give for varying speeds of the rod the greatest variety of combinations of the bands. Among these is to be included that of no bands at all, as will be understood from Fig. 11 (Plate VII). And in fact, a little practice will enable the observer so to adjust the rate of the (broad) rod to that of the disc that no bands are observable. But care must be taken here that the eye is rigidly fixated and not attracted into movement by the rod, since of course if the eye moves with the rod, no bands can be seen, whatever the rate of movement may be.

Thus, all the phenomena of these illusion-bands have been explained as the result solely of the hiding by the rod of successive sectors of the disc. The only physiological principles involved are those (1) of the duration of after-images, and (2) of their summation into a characteristic effect. It may have seemed to the reader tedious and unnecessary so minutely to study the bands, especially the details last mentioned; yet it was necessary to show how all the possible observable phenomena arise from the purely geometrical fact that sectors are successively hidden. Otherwise the assertions of previous students of the illusion, that more intricate physiological processes are involved, could not have been refuted. The present writer does not assert that no processes like contrast, induction, etc., come into play to modify somewhat the saturation, etc., of the colors in the bands. It must be here as in every other case of vision. But it is now demonstrated that these remoter physiological processes contribute nothing essential to the illusion. For these could be dispensed with and the illusion would still remain.