The explanation of the phenomenon is simple. The bands are not produced by a single interruption of the vision of a sector by a rod, but each band is made up of successive superpositions on the retina of many such single-interruption bands. The overlapping of bands has been already described (cf. Fig. 10 and [pp. 196-198]); superposition depends of course on the same principle.

At the moment when a system of four bands of either color is seen at rest, the rod is moving just one fifth as rapidly as the disc; so that, while the rod goes once around, either sector, say the green one, will have passed behind it exactly four times, and at points which lie 90° apart. Thus, four red bands are produced which lie at right angles to one another. But the disc is revolving at least 24 times in a second, the rod therefore at least 4.8 times, so that within the interval of time during which successive stimuli still contribute to the characteristic effect the rod will have revolved several times, and with each revolution four red bands at right angles to one another will have been formed. And if the rod is moving exactly one fifth as fast as the disc, each new band will be generated at exactly that position on the disc where was the corresponding band of the preceding four. The system of bands thus appear motionless on the disc.

The movement of the system arises when the rate of the rod is slightly less or more than one fifth that of the disc. If slightly less, the bands formed at each rotation of the rod do not lie precisely over those of the previous rotation, but a little to the rear of them. The new set still lies mostly superposed on the previous sets, and so fuses into a regular appearance of bands, but, since each new increment lags a bit behind, the entire system appears to rotate backward. The apparatus is actually a cinematograph, but one which gives so many pictures in the second that they entirely fuse and the strobic movement has no trace of discontinuity.

If the rod moves a trifle more than one fifth as fast as the disc, it is clear that the system of bands will rotate forward, since each new set of bands will lie slightly ahead of the old ones with which it fuses. The farther the ratio between the rates of rod and disc departs from exactly 1:5, whether less or greater, the more rapid will the strobic movement, backward or forward, be; until finally the divergence is too great, the newly forming bands lie too far ahead or behind those already formed to fuse with them and so be apperceived as one system, and so the bands are lost in confusion. Thus the cycle of movement as observed on the disc is explained. As the rate of the rod comes up to and passes one fifth that of the disc, the system of four bands of each color forms in rapid backward rotation. Its movement grows slower and slower, it comes to rest, then begins to whirl forward, faster and faster, till it breaks up again.

The same thing happens as the rate of the rod reaches and exceeds just one fourth that of the disc. The system contains three bands of each color. The system of two bands of each color corresponds to the ratio 1:3 between the rates, while one band of each color (the two lying opposite) corresponds to the ratio 1:2.

If the rod and the disc rotate in opposite directions, the phenomena are changed only in so far as the changed geometrical relations require. For the ratio 1:3 between the two rates, the strobic system has four bands of each color; for 1:2, three bands of each color; while when the two rates are equal, there are two bands of each color, forming a diameter. As would be expected from the geometrical conditions, a system of one band of each color cannot be generated when rod and disc have opposite motions. For of course the rod cannot now hide two or more times in succession a sector at any given point, without hiding the same sector just as often at the opposite point, 180° away. Here, too, the cycle of strobic movements is different. It is reversed. Let the disc be said to rotate forward, then if the rate of the rod is slightly less than one fourth, etc., that of the disc, the system will rotate forward; if greater, it will rotate backward. So that as the rate of the rod increases, any system on its appearance will move forward, then stand still, and lastly rotate backward. The reason for this will be seen from an instant's consideration of where the rod will hide a given sector.

It is clear that if, instead of using as 'rod' a single radial sector, one were to rotate two or more such sectors disposed at equal angular intervals about the axis, one would have the same strobic phenomena, although they would be more complicated. Indeed, a large number of rather narrow sectors can be used or, what is the same thing, a second disc with a row of holes at equal intervals about the circumference. The disc used by the writer had a radius of 11 inches, and a concentric ring of 64 holes, each 3/8 of an inch in diameter, lying 10 inches from the center. The observer looks through these holes at the color-disc behind. The two discs need not be placed concentrically.

When produced in this way, the strobic illusion is exceedingly pretty. Instead of straight, radial bands, one sees a number of brightly colored balls lying within a curving band of the other color and whirling backward or forward, or sometimes standing still. Then these break up and another set forms, perhaps with the two colors changed about, and this then oscillates one way or the other. A rainbow disc substituted for the disc of two sectors gives an indescribably complicated and brilliant effect; but the front disc must rotate more slowly. This disc should in any case be geared for high speeds and should be turned by hand for the sake of variations in rate, and consequently in the strobic movement.

It has been seen that this stroboscope is not different in principle from the illusion of the resolution-bands which this paper has aimed to explain. The resolution-bands depend wholly on the purely geometrical relations between the rod and the disc, whereby as both move the rod hides one sector after the other. The only physiological principles involved are the familiar processes by which stimulations produce after-images, and by which the after-images of rapidly succeeding stimulations are summed, a certain number at a time, into a characteristic effect.

FOOTNOTES.