Dresden. Zwinger. Conventionalized figures ending at the waist are put on the outside of unvarying piers which bear the actual weight of the superstructure. The figures are all varied, but they cannot be conceived as really bearing the strain, since they have no foundation, but are merely added to the pier as a decoration.

Rouen. Tomb of Duc de Brezé. Four caryatids, all different, under four jutting projections of the arch. These projections are built securely into the rest of the structure and do not depend in the slightest on the figures for support. The figures are not integral parts of the whole architecturally, for the arch would stand exactly as well if they walked away, which indeed they are apparently in the act of doing.

Toulouse. Hotel de la Borde. Two caryatids under jutting projections of a window. The projections are securely built into the lintel and no weight rests on the caryatids nor even appears to. They are there solely as decorations and are different.

Paris. Hotel de Ville. Two caryatids under jutting projection of a window, again. Here is a very slight variation of the two female figures. The position of each is reversed to accent the symmetry of the whole. Very little weight is actually borne by them, but more than in the former cases, and we find proportionately less variation in the figures. They approach identity, but there is variation in detail.

These were the main instances found of the point in question, and are a type of the other minor ones found in support of pulpits, choir-stalls, and windows. It will be seen that in no case but the two classic ones given at the beginning are the human figures architecturally necessary to the structures, and in these cases they do not vary. In the other cases they are more or less playful, and the effect of the whole would be very unsteady did the superstructure actually depend upon them for support; but since piers rise invariably behind them and bear the weight, they fall into the sphere of decoration and from that point of view they must and do vary.

We have, then, considered variation of units in a repeated series, where they may vary and where they must, and we find the real value of repetition to appear in inverse proportion to the individual significance of the separate units; the more interesting or expressive the unit is in itself with individual significance, the less do we want it repeated; and so repetition of the human form must be conventionalized to the type (or to the same unvarying features), with enough individual differences still remaining to meet the demands both of the series and the individual. What apparent exceptions we have found to this rule have been shown to be meeting, in reality, another artistic demand.

ENDS OF SERIES AND ARRANGEMENT OF REPETITIONS WITHIN THE UNIT

The next question to consider is the ends necessary for a repeated series. Do they end with a heavier or with a lighter unit than the rest of the series, or with a unit of the same size? It will be remembered in the experiments touching this point that the subjects, without exception, preferred the series ending with heavier units. We should then expect, in examples of repeated groups of posts, pillars, etc., alternating with wider or more prominent ones of the same kinds, that the series would end with the heavier or more prominent one. Examples of railings or balustrades alternating with heavier supports are so common, and the supports come so invariably on the end, that repeated examples seem almost unnecessary. But another question arose in connection with this: Does not the apperception of a group of lines equidistant from each other consist in going back and forth over them from edge to edge, with no rest on one point more than on another; while in a group of lines arranged at equal distances each side of the centre but not from each other, to emphasize bilateral symmetry, does not the attention rest on the centre, and move from the centre of one group to the next?

Moreover, we found that a wider space or embankment of some sort was necessary, to finish off a series of groups in which the separate lines were equidistant from each other, than to finish the groups whose lines were symmetrically arranged. This suggests that the activity which goes back and forth in the former case, being less coördinated and not bound to a middle point, needs more at the end to stop it than is needed in the latter case, when the attention is more upon the centre of each figure. It would seem, then, that the former arrangement would be appropriate for railings and balustrades, where the effect is of continuity either running wholly around the structure and into itself again or where a continuity of parts is desired and a connected series. The other arrangement divides the series into discrete parts. If the attention is stopped at every central point, the effect is less of continuity and more of separate unities bound together externally by their equal distances. We should, then, expect such series of units much less in continuous balustrades, but if they occurred at all, that they would be in connection with separate unities that did not want continuity or place in a series emphasized at the expense of their individuality. All this we might expect from the experiments alone, although whether such a refinement would have got into architecture seems questionable. Moreover, the question whether a symmetrical group of units needs a less heavy end to finish it than a group of the equidistant type is even more difficult to illustrate. Although the two types may be given under some conditions in experiments, in actual architecture they never appear so, for the two types never appear in the same buildings allowing them to be compared. Besides, few photographs are taken exactly in front, and no two at just the same angle. Any accurate measurement of such end piers and any comparison of them is out of the question in the present methods of research.