III.—For 16-carat gold: Twenty-four parts gold (16 carat), 10 parts silver, and 8 parts copper; refractory.
IV.—For 14-carat gold: Three parts gold (14 carat), 2 parts silver, and 1 part copper; more fusible.
V.—Gold solder for alloys containing smaller quantities of gold is composed {662} of 8 parts gold, 10.5 parts silver, and 5.5 parts copper, or,
VI.—Ten parts gold (13.5 carat), 5 parts silver, and 1 part zinc.
VII.—The following easily fusible solder is used for ordinary gold articles: Two parts gold, 9 parts silver, 1 part copper, and 1 part zinc. Articles soldered with this solder cannot be subjected to the usual process of coloring the gold, as the solder would become black.
VIII.—A refractory enamel solder for articles made of 20-carat and finer gold, which can bear the high temperature required in enameling, consists of 37 parts gold and 9 parts silver, or 16 parts gold (18 carat), 3 parts silver, and 1 part copper.
Which of these compositions should be employed depends upon the degree of the fusibility of the enamel to be applied. If it is very difficult of fusion only the first named can be used; otherwise it may happen that during the melting on of the enamel the soldering spots are so strongly heated that the solder itself melts. For ordinary articles, as a rule, only readily fusible enamels are employed, and consequently the readily fusible enameling solder may here be made use of. Soldering with the latter is readily accomplished with the aid of the soldering pipe. Although the more hardly fusible gold solders may also be melted by the use of the ordinary soldering pipe, the employment of a special small blowing apparatus is recommended on account of the resulting ease and rapidity of the work.
Solders For Glass.
I.—Melt tin, and add to the melted mass enough copper, with constant stirring, until the melted metal consists of 95 per cent of tin and 5 per cent of copper. In order to render the mixture more or less hard, add 1/2 to 1 per cent of zinc or lead.
II.—A compound of tin (95 parts) and zinc (5 parts) melts at 392° F., and can then be firmly united to glass. An alloy of 90 parts of tin and 10 parts of aluminum melts at 734° F., adheres, like the preceding, to glass, and is equally brilliant. With either of these alloys glass may be soldered as easily as metal, in two ways. In one, heat the pieces of glass in a furnace and rub a stick of soldering alloy over their surfaces. The alloy will melt, and can be easily spread by means of a roll of paper or a slip of aluminum. Press the pieces firmly together, and keep so until cool. In the other method a common soldering iron, or a rod of aluminum, is heated over a coal fire, a gas jet, or a flame supplied by petroleum. The hot iron is passed over the alloy and then over the pieces to be soldered, without the use of a dissolvent. Care should be taken that neither the soldering irons nor the glass be brought to a temperature above the melting point of the alloy, lest the latter should be oxidized, and prevented from adhering.