Efflorescence, or the appearance of a white coating on the surfaces, sometimes takes place when blocks are repeatedly saturated with water and then dried out; blocks laid on the ground are more liable to show this defect. It results from diffusion of soluble sulphates of lime and alkalies to the surface. It tends to disappear in time, and rarely is sufficient in amount to cause any complaint.
Properties Of Concrete Blocks
| Limestone, Bedford, Ind. (Indiana Geographical Survey) | 7,792 pounds |
| Limestone, Marblehead, Ohio (Q. A. Gillmore) | 7,393 pounds |
| Sandstone, N. Amherst, Ohio (Q. A. Gillmore) | 5,831 pounds |
| Gravel concrete, 1:1.6:2.8, at 1 year (Candlot) | 5,500 pounds |
| Gravel concrete, 1:1.6:3.7, at 1 year (Candlot) | 5,050 pounds |
| Stone concrete, 1:2:4 at 1 year (Boston El. R. R.) | 3,904 pounds |
Actual tests of compression strength of hollow concrete blocks are difficult to make, because it is almost impossible to apply the load uniformly over the whole surface, and also because a block 16 inches long and 8 inches wide will bear a load of 150,000 to 200,000 pounds, or more than the capacity of any but the largest testing machines. Three one-quarter blocks, 8 inches long, 8 inches wide, and 9 inches high, with hollow space equal to one-third of the surface, tested at the Case School of Science, showed strengths of 1,805, 2,000, and {696} 1,530 pounds per square inch, respectively, when 10 weeks old.
Two blocks 6 x 8 x 9 inches, 22 months old, showed crushing strength of 2,530 and 2,610 pounds per square inch. These blocks were made of cement 1 1/4 parts, lime 1/2 part, sand and gravel 6 parts, and were tamped from damp mixture. It is probably safe to assume that the minimum crushing strength of well-made blocks, 1 to 5, is 1,000 pounds per square inch at 1 month and 2,000 pounds at 1 year.
A block 12 inches wide and 24 inches long has a total surface of 288 square inches, or, deducting 1/3 for openings, a net area of 192 inches. Such a block, 9 inches high, weighs 130 pounds. Assuming a strength of 1,000 pounds and a factor of safety of 5, the safe load would be 200 pounds per square inch, or 200 × 192 = 38,400 pounds for the whole surface of the block. Dividing this by the weight of the block, 130 pounds, we find that 295 such blocks could be placed one upon another, making a total height of wall of 222 feet, and still the pressure on the lowest block would be less than one-fifth of what it would actually bear. This shows how greatly the strength of concrete blocks exceeds any demands that are ever made upon it in ordinary building construction.
The safe load above assumed, 200 pounds, seems low enough to guard against any possible failure. In Taylor and Thompson’s work on concrete, a safe load of 450 pounds for concrete 1 to 2 to 4 is recommended; this allows a factor of safety of 5 1/2. On the other hand, the Building Code of the city of Cleveland permits concrete to be loaded only to 150 pounds per square inch, and limits the height of walls of 12-inch blocks to 44 feet. The pressure of such a wall would be only 40 pounds per square inch; adding the weight of two floors at 25 pounds per square foot each, and roof with snow and wind pressure, 40 pounds per square foot, we find that with a span of 25 feet the total weight on the lowest blocks would be only 52 pounds per square inch, or about one-twentieth of their minimum compression strength.
Blocks with openings equal to only one-third the surface, as required in many city regulations, are heavy to handle, especially for walls 12 inches and more in thickness, and, as the above figures show, are enormously stronger than there is any need of. Blocks with openings of 50 per cent would be far more acceptable to the building trade, and if used in walls not over 44 feet high, with floors and roof calculated as above for 25 feet span, would be loaded only to 56 pounds per square inch of actual surface. This would give a factor of safety of 18, assuming a minimum compression strength of 1,000 pounds.
There is no doubt that blocks with one-third opening are inconveniently and unnecessarily heavy. Such a block, 32 inches long, 12 inches wide, and 9 inches high, has walls about 3 1/2 inches thick, and weighs 180 pounds. A block with 50 per cent open space would have walls and partitions 2 inches in thickness, and would weigh about 130 pounds. With proper care in manufacture, especially by using as much water as possible, blocks with this thickness of walls may be made thoroughly strong, sound, and durable. It is certainly better for strength and water-resisting qualities to make thin-walled blocks of rich mixture, rather than heavy blocks of poor and porous material.
Filling the voids with cement is a rather expensive method of securing waterproof qualities, and gives stronger concretes than are needed. The same may be accomplished more cheaply by replacing part of the cement by slaked lime, which is an extremely fine-grained material, and therefore very effective in closing pores. Hydrate lime is the most convenient material to use, but nearly as costly as Portland cement at present prices. A 1 to 4 mixture in which one-third the cement is replaced by hydrate lime will be found equal to a 1 to 3 mixture without the lime. A 1 to 4 concrete made from cement, 1; hydrate lime, 1/2; sand and gravel, 6 (by weight), will be found fairly water-tight, and much superior in this respect to one of the same richness consisting of cement, 1 1/2; sand and gravel, 6.